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Abstract

The non-uniform growth of the microstructures in dendritic form inside the battery during
prolonged charge-discharge cycles causes short-circuit as well as the capacity fade. We develop
a feed-back control framework for the real-time minimization of such microstructures. Due to
accelerating nature of the branched evolution, we focus on the early stages of growth, identify the
critical ramified peaks and compute the effective time for the dissipation of ions from vicinity of
those branching fingers. The control parameter is a function of the maximum interface curvature
(i.e. minimum radius) where the rate of run-away is the highest. The minimization of total charging
time is performed for generating the most packed microstructures which correlate closely with those
of considerably higher charging periods, consisting of constant and uniform square waves. The
developed framework could be utilized as a smart charging protocol for the safe and sustainable
operation of rechargeable batteries, where the branching of the microstructures could be correlated
to the sudden variation in the current/voltage.
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1 Introduction

The growing demand for portable computational power requires novel and reliable high capacity energy
storage devices. Despite such impressive growth of the need in the daily lifestyle, the underlying science
remains to be developed [1]. Rechargeable batteries, which retrieve/store energy from/within the chem-
ical bonds, have proven to be the most reliable and cleanest resource of electrical energy for efficient
power management [2, 3].
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It is well established that Lithium is the ideal metal used for anodes in batteries because of their
possession of a very high specific capacity (372 mAh.g−1) and the lowest redox potential (−3.04 V
relative to standard hydrogen electrode) [4]. Although the development of portable electronics, electric
vehicles and wireless devices is in continuous acceleration, their main source of energy storage – the Li
rechargeable batteries – is still facing some challenges. Li-batteries are still far from providing safe and
efficient applications due to their low Coulombic efficiency and their dendritic growth [5]. Deposition
behavior of Li atoms is one major barrier in front of rechargeable batteries’ development and efficiency
[6]. During electrodeposition, the ions do not shape a flat surface and form sharp dendritic structures
instead because they are very highly reactive metals [7, 8]. The dendritic morphology of the surface
leads to internal short circuits (when the ions reach the cathode) which might then cause critical thermal
runaway for the batteries as well as fast anode capacity fading [4, 6, 9, 10]. This happens more frequently
when the charging is fast which causes complications in all practical applications of the batteries [8].
Hence the need for efficient methods to ensure the suppression of the dendrites. Many approaches
have been developed for this purpose including mechanical suppression with solid-solid interfaces [9],
placement of the Li ions in a scaffold [11], addition of electrolyte additive [12] or alloying additional
composites on the Li foil to control stripping [13].

During charge period, the fast-pace formation of microstructures with relatively low surface energy
from Brownian dynamics, leads to the branched evolution with high surface to volume ratio [14]. The
speeding evolution of microstructures makes them highly branched and porous. This helps them unnec-
essarily occupy a large volume for a small amount of charge, possibly reaching the counter-electrode and
short-circuit the cell. Additionally, they can also dissolve from their thinner necks during subsequent
discharge period and form detached dead crystals. This leads to thermal instability and capacity decay
[15]. Such a formation-dissolution cycle is particularly prominent for the metal electrodes due to lack of
intercalation, which is the diffusion into inner layer as the housing for the charge, where the depositions
on the surface is the only dominant formation mechanism versus the diffusion into the inner layers as
the housing [16]. The growing amorphous crystals could pierce into the polymer electrolyte and shorten
the cell. Given their higher porosity, they could have mechanical properties comparable to the bulk
form [17].

Previous studies have investigated various factors of dendrites formation such as current density
[18], electrode surface roughness [19, 20], impurities [21], solvent and electrolyte chemical composition
[22, 23], adhesive polymers[24], temperature [25, 26], guiding scaffolds [27, 28], capillary pressure [29],
cathode morphology [30] and mechanics [31, 32, 33, 34]. Some of the conventional characterization
techniques used include NMR [35] and MRI. [36] Recent studies have also shown the necessity of the
stability of the solid electrolyte interphase (i.e. SEI) layer for controlling the nucleation and growth of
the branched medium [37, 38] as well as pulse charging [39, 40].

Previous models of dendrites had focused on the electric field and space charge as the main respon-
sible mechanisms [41]. The later models focused on ionic concentration causing the diffusion limited
aggregation (DLA) [42, 43]. Both mechanisms are part of the electrochemical potential [44], indicating
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that each could be dominant depending on the localization of the electric potential or ionic concentra-
tion within the medium. Recent studies have explored both factors and their interplay, particularly in
continuum scale and coarser time intervals, matching the scale of the experimental time and space [45].
Other simplified frameworks include phase field modeling [46, 47, 48] and analytical developments [49].

During the charging phase, the ions accumulate at the dendrites tips (unfavorable) due to high
electric field on the convex boundary. At the same time, they tend to diffuse away to the other less-
concentrated regions due to diffusion (favorable). Such dynamics typically occurs within the double
layer (or stern layer [50]) which is relatively small and comparable to the Debye length. At high charge
rates, the ionic concentration is depleted on the reaction sites and could tend to zero [51]; Nonetheless,
our continuum-level study extends to larger scale, beyond the double layer region [52].

Dendrites instigation is rooted in the non-uniformity of electrode surface morphology at the atomic
scale combined with Brownian ionic motion during electrodeposition. Any asperity in the surface pro-
vides a sharp electric field that attracts the upcoming ions as a deposition sink. Indeed the closeness of
a convex surface to the counter electrode, as the source of ionic release, is another contributing factor.
In fact, the same mechanism is responsible for the further semi-exponential growth of dendrites in any
scale.

Pulse method has been qualitatively proved as a powerful approach for the prevention of dendrites
[45], which has previously been utilized for uniform electroplating [53]. The pulse method consists of two
consecutive periods: the charging period tON during which the current is supplied and the subsequent
rest period tOF F where the applied current is zero. During the charge the mass flux to-and-away
from a given region cooperatively with the rate of depleting reduction reaction determines the ultimate
concentration of ions. While the reaction can occur in any surface, it is highly probable in the tips due
to high electric fields. During the subsequent relaxation period, these ions spread out and leave towards
low-concentrated zones, providing the equilibrium state where ideally afterwards the net diffusion due to
Brownian motion is zero. The optimum rest period is in fact the RC time of the electrochemical system
[45, 54], similar to the relaxation scale of the blocking electrodes. We have explained qualitatively
how relatively shorter pulse periods with identical duty cycles D reduces the dendrites. The coarse
grained computationally-affordable algorithm allows reaching the experimental time scale (ms). We
have developed theoretical limit the optimal minimization of the dendrites [40] and we have obtained
the pulse charging parameters for individual curved peaks based on their curvature [52].

In this paper, we elaborate on the real-time controlling of the pulse relaxation parameters for the
minimization of microstructures grown in the scales extending to the cell domain, while minimizing
the charging time. Such development is based on the radius of the curvature of the critical site in the
interface. The response of the imposed relaxation time to the formation of curved surface is shown to
be extremely agile. Ultimately we compare the resulted morphology with imposing various constant
relaxation periods.
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Figure 1: Snapshot of the Dendritic growth simulation with the transport elements. green: dendrite,
red: free ions, blue: electric field, gray: iso-potential contours. The green oval contains the displacement
vectors.)

2 Methodology

During a typical charge period, the ionic species Li+ get transported across the cell due to electrochemical
flux and get reduced to the atomic form via the the following reaction:

Li+ + e− → Li0 (1)

The electrochemical flux is generated either from the gradients of concentration (∇C) or electric
potential (∇V ). At the ionic scale, the ions of the higher concentration regions tend to collide with
and repel from each other more and, given enough time, diffuse to lower concentration zones, following
Brownian motion. In the continuum (i.e. coarse) scale of time, such inter-collisions could be added-up
and be represented by the diffusion length δ~rD as: [45]

δ~rD =
√

2Dδt ĝ (2)

where ~rD is diffusion displacement of individual ion, D is the ionic diffusion coefficient in the elec-
trolyte, δt is the coarse time interval , and ĝ is a normalized vector in random direction, representing
the Brownian dynamics. The diffusion coefficient D is generally concentration dependent [39], due to
electro-neutrality within the considerable space in the domain and we assume it is constant in the range
considered. The diffusion length represents the average progress of a diffusive wave in a given time,
obtained directly from the diffusion equation[55]. δt is in fact the coarse grained time scale, which
approximates the displacement wave from many inter-collisions in the smaller time scales (i.e. fs).

On the other hand, ions tend to acquire drift velocity in the electrolyte medium when exposed to
electric field and during the given time δt their progress δ~rM is given as:

4



δ~rM = µ~Eδt (3)

where µ is the mobility of cations in electrolyte, ~E is the local electric field. The voltage V is obtained
from the laplacian relationship.

Therefore the total effective displacement δ~r would be:

δ~r = δ~rD + δ~rM (4)

as represented in the Figure 1 and the potential of each ion is considered to be the average of the
grid that the ion falls in. Since the Rayleigh number Ra is highly correlates with the thickness (i.e.
Ra ∝ l3), for a thin layer of electrodeposition we have Ra < 1500 and thus the convection is negligible
[56].

Assuming electro-neutrality in the domain one has [57]:

∇2V ≈ 0 (5)

where the dendrite body is part of the boundary condition per se and the double layer region has
been omitted due to small effect [45]. Equation 5 in 2D translates into the following:

∂2V

∂x2 + ∂2V

∂y2 ≈ 0 (6)

The Equation 6 can be solved using the finite difference scheme. Assuming that Vi,j represents the
electric potential value in the location (xi, yj) one has:

Vi+1,j − 2Vi,j + Vi−1,j

δx2 + Vi,j+1 − 2Vi,j + Vi,j−1

δy2 ≈ 0 (7)

Assuming the segmentations in the horizontal and vertical directions are identical (δx = δy) this
Equation can be re-organized as:

Vi,j = 1
4 (Vi+1,j + Vi−1,j + Vi,j+1 + Vi,j−1) (8)

which means that the value at each given coordinate Vi,j equals the average of the four first order
neighbors surrounding it. The boundary condition for solving equation 8 is the potential values in the
counter-electrodes as well as the dendrites:


Vanode = V−

Vcathode = V+

Vdendrite = V−

(9)

As well the periodic boundary condition is applied on the ions leaving the domain. Therefore, the
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(a) Square pulse wave by the amount of current applied I(t) in
time.

tOptOFF = tREL

t

Ÿl
D

l2

D

(b) Schematics of the variation in the feedback relax-
ation time tREL in the range of shown boundaries,
depending on the interface curvature rd .

Figure 2: Time-dependent parameters: tREL is used as a control parameter for dendritic suppression.

Equation 8 can be solved for any given point via iteration of the potential values until the results of the
successive iterations converge. Needless to mention that the potential value in the dendrite body is the
same as the anode since they are physically connected as shown in the Equation 9. Consequently, the
electric field is the gradient of electric potential as:

~E = −∇V (10)

The initial layer is defined as a line of atoms in the bottom of the domain. During the simulation, the
upcoming ions gradually move toward the electrode due to electric field and approach to the electrode
surface. If there is overlap in volume, the reaction 1 occurs with an specific probability and the ion joins
the dendrite body, leading to the growth.

The pulse charging in its simplest form consists of trains of square active period tON , followed
by a square rest interval tOF F in terms of current I or voltage V as shown in Figure 2a. The period
P = tON + tOF F is the time lapse of a full cycle. Hence the pulse frequency f is:

f = 1
tON + tOF F

(11)

and the duty cycle D represents the fraction of time in the period P that the pulse is active:

D = tON

tON + tOF F

(12)

= ftON (13)
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Figure 3: Pseudo-chart of the feedback algorithm.

During the growth process, the dendritic branches evolve in random directions due to Brownian
nature of ionic motion and deposition. The formed fingers possess a high curvature and have closer
proximity to the upcoming ions. Thus they develop excessive amount of electric field in their tips which
becomes a source for the acceleration in their development per se. Hence imposing a relaxation time
would allow the concentrated ions in the ramified peaks to dissipate away into the less-concentrated
regions - likely into the pores inside the dendrite - until the formation of uniform concentration of ions
across the dendrite. The time required for this relaxation depends on the curvature of the interface,
where the higher curvature sites would require a shorter time for the concentration relaxation within the
double layer region [52]. In fact such relaxation could occur locally within interfacial double layer scale
the thickness of κ to globally within the span of the entire cell domain. From dimensional analysis, the
relaxation time of the double layer in the flat electrode is in the range of ∼ κ2

D
[58] and for the larger

domain of the cell with the representative length of l, it would scale up to ∼ l2

D
. Their geometric mean

has been later considered as ∼ κl

D
[54]. In fact the relaxation of the concentration depends highly on the

curvature of the peaks. The entire growing interface possesses a wide range of radius of curvature values
rd, expanding from the flat surface to the highly-curved fingers as small as the atomic value, therefore:

rd ∈ [a,∞) (14)

Hence, the relaxation time for a randomly-growing interface with variation of curvature along the
interfacial line, would vary as well. Hereby, we define the feedback relaxation time tREL a curvature
dependent function f(rd) multiplied by the geometric mean time for the concentration relaxation (i.e.
RC time) as:

tREL = f(rd)κl
D

(15)

As the interface grows from the initial flat state (rd → ∞) to ultimately creating sharp fields
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(rd → a), the feedback relaxation time tREL should adapt respectively based on the most critical state
of the interface, which is the location of ionic concentration. During the initial stage of dendritic growth
the concentration gradient only exists in the double layer region (∼ κ) and therefore the relaxation in
those sites would suffice for the uniform growth. After initiation of the peaks and the accumulation of
the ions in the ramified zones, the relaxation should occur in consideration of the entire scale of the
domain (∼ l). Hence, the feedback relaxation time tREL should occur from its minimal value during the
instigation, to its maximal value in the atomic scale.

An appropriate measure of the degree of formation of peaks in the growing dendritic morphology is
their respective radius of curvature rd.

In order to prevent the excessive growth of the peaks and to get uniform morphology one needs to
provide enough relaxation time to diffuse away the concentrated ions in the tips. While the relevant
relaxation time-scale for the uniformization of the concentration gradient in the flat interface is ∼ κl

D
,

the extreme peaks might require the uniformization up to the scale of the entire domain ∼ l2

D
. Therefore

the boundary conditions for the Equation 15 would be:


limrd→∞ f(rd) = 1 Flat

limrd→ratom f(rd) = l

κ
Ramified

(16)

The form of the control function f(rd) is chosen to be a combination of linear and exponential terms
as f(rd) = ard + b exp(crd), from the boundary conditions in the Equation 16 one gets:

f(rd) = 1 + ( l
κ
− 1) exp[−rd] (17)

Thus the feedback relaxation time tREL is obtained as:

tREL = κl

D

(
1 + ( l

κ
− 1) exp[−rd]

)
(18)

The obtained feedback relaxation time tREL is used as a control measure for real-time hampering of
dendritic development, trend of which is schematically shown in the Figure 2b. The value of feedback
relaxation time tREL is highly sensitive to the radius of curvature rd and hence changes in real time,
while staying in the range of determined limits of κl

D
and l2

D
.

The radius of curvature rd can be approximated via the contours of the iso-potential curvature of the
electric field in the vicinity of electrodeposits, where it occurs typically within the double layer region
of thickness κ. The corresponding line could be obtained by allocating a magnitude of the iso-potential
contour close-enough to the electrode (Vcontour := 0.9∆V ). The contour plot of MATLAB provides the
iso-potential line with the specified value. If (x, y) represent the coordinates of the curvature line, the
point of the minimum radius of curvature would address the most critical state, and requires higher
dissipation of ionic concentration. The radius of curvature rd can be calculated from Equation 19 as:
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Var. Value Ref.
δt(µs) 1 [59]
D(m2/s) 1.4× 10−14 [45]
#Li+ 200 [45]
#Li0 400 [45]
l(nm) 167 [45]
∆V (mV ) 85 [45]
Domain size 16.7nm× 16.7nm [45]

Table 1: Simulation parameters.

rd = min
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x=l

x=0

(19)

This value is computed in real-time by means of finite difference and gets inserted into the feedback
algorithm of the Figure 3. In fact, the curvature-dependent relaxation time provides a positive feedback
for halting of the growing dendrites, which is negative feedback for dendritic evolution. The Flowchart 3
represents the control loop representing the real-time computation of the curvature and the correspond-
ing feedback relaxation time for the minimization of the dendritic branching. Figure 2b schematically
represents such variation where the feedback relation time tREL starts from the minimum value of ∼ κl

D
in the flat surface and varies based on the measurement of the highest curvature of the tip given in the
Equation 19.
The thickness of the double layer κ can be obtained from [54, 58, 60]:

κ =
√

εkBT

2z2e2C∞
(20)

where ε is the permittivity of the solvent, kB is Boltzmann constant, T is the temperature, z is the
valence number, e is the electron charge and C∞ is the average ambient electrolyte concentration. Debye
length by definition is the distance the charge electrostatic effect persists. Therefore in such region the
concentrations are not uniform and the double layer forms in the same scale.

The computation was carried out based on the simulation parameters given in the Table 1. Figure 4
illustrates the resulted morphologies of the grown dendrites based on the applied relaxation time. It is
clear that the higher rest period tOF F generates more dense morphology. The most uniform deposition
is resulted from the maximum value of rest period tOF F = l2

D
and with very close proximity from the

optimized feedback relaxation time tREL, given in the Equation 18.
The density of the electro-deposits can easily be calculated from confining the atoms in a rectangle,

the height of which spans to the highest dendrite coordinates h. Therefore:
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(a) tOF F = 0 (b) tOF F = κl

D
(c) tOF F = tREL (d) tOF F = l2

D

Figure 4: Ultimate morphologies obtained for different relaxation periods.

ρ = Nπa2

hl

where N is the number of atoms composing the dendrite, a is the atomic radius and l is the scale
of the domain. The density of the morphologies, sample of which is shown in the Figure 6 is provided
in the Figures 6a, 6b and 6c versus various relaxation time values as the control parameter and N ∈
{200, 400, 800}. In order to mitigate the steady-state condition, for every deposited atom, one extra
atom is randomly added to the moving free ions.

Furthermore, the variation of the highest interfacial curvature (minimum radius of curvature rd) and
their corresponding feedback relaxation time tREL and the density ρ versus the number of deposited
atoms are shown in the Figures 7a, 7b and 7c.

3 Experimental

We performed experiments within a manually-fabricated sandwich cell [61], which provides the possibility
of in-situ observation of growing dendrites from the periphery (Figure 5a). The cell encompasses two Li0

disc electrodes (d = 1.59cm) with the distance of L = 0.32cm via a transparent acrylic PMMA separator.
The fabricated cells were filled with 0.4cm3 of LiPF6 in a solution with stoichiometric compound of
EC:EMC≡1:1 in an argon-filled glovebox (H2O,O2 < 0.5ppm). Multiple such cells were electrolyzed
with the values given in the Table 2, generated by a programmable multichannel cycler. After the passage
of 48mAh (≈ 173C) through the cells, 3 images within the periphery of 1200 were taken by means of
Leica M205FA optical microscope through the acrylic separator. The image processing algorithm is
described as below:

1. The RGB image is read to the program by 3 values of {Red,Green,Blue} ∈ [0, 255] and has been
converted to a grayscale image I with individual values of range Ii,j ∈ [0, 1].

2. The grayscale image Ii,j is binarized to Ji,j via the grayness threshold Ic as below:
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Ji,j =

1 Ii,j ≥ Ic

0 Ii,j < Ic

the threshold value Ic has been chosen to minimize the weighted intra-class variance σ2 defined as:
σ

2 = ω0σ
2
0 + ω1σ

2
1

ω0 + ω1 = 1

where ω0 and ω1 are the total fraction of element divided by the value of Ic and σ2
0 and σ2

1 are their
respective variances. [62] Such minimization ensures that the resulted

3. The circular sandwich cell with the radius r has been divided of 3 arcs with the angle of 2π
3 and

width incremental length of δx, which is supposed to be projected to a 2D plane with the incremental
width of δx′. From Figure 5a due to geometry we have: x = d

2sin(θ), → dx = d

2cos(θ)dθ, where

cos(θ) =
√

1− 4x2

d2 ; hence:

δx′ = δx√
1− 4x2

d2

where d is diameter of the sandwich cell [63].
4. Starting from the electrode surface, the occupied space by the dendrites has been calculated by

the square site percolation paradigm [64].
5. The infinitesimal calculations have been integrated and normalized to inter-electrode distance

(λ̂i := λi/l ) to get the dendrite measure λ̄ as:

λ̄ = 1
πdl

3∑
k=1

∫ +π
3

−π3
λ̂k(θ)d2dθ (21)

= 1
πdl

3∑
k=1

∫ +π
3

−π3

λ̂k(x)dx√
1− 4x2

d2

The integral Equation 21 has been obtained by incremental sum from experimental data. Figure
5b shows such investigation for the duty cycles of D = {0.4, 0.8}, where the red encirclement is the
approximated dendrite area, the green rectangle is the total area, and the red line represents the height
of the tallest obtained dendrite in each experiment. The detailed experimental parameters are given in
the Table 2.

Note that the current density i and the ionic flux j are correlated with i = zFj, where z is the valence
number of charge carriers and F = 96.5 kC/mol is the Faraday’s constant, representing the amount of
charge per mole.
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(a) Naked-eye observation of dendrites.[25]

D = 0.8 , ρ = 0.77

D = 0.4 , ρ = 0.34

(b) Obtained fractional area of the morphologies (red en-
closures) for D = 0.8 (top) and D = 0.4 (bottom) used
for computing dendrite measure λ̄.

Figure 5: Experimental Procedure.

Parameter D i l r T C∞ Q
Value {0.4, 0.8} 1 3.175 7.95 298 1 173
Unit [ ] mA/cm2 mm mm K M C

Table 2: Experimental Parameters.

4 Results & Discussion

The mechanism used in the pulse charging works based on the relaxation of the ionic concentration in
the dendritic tips where the order of concentration is as follows:

Concentration: Tip > Bulk > V oids

The formation of such concentration gradient after the instigation, in fact, leads to the further growth.
Therefore the applied feedback relaxation time should effectively dissipate away the accumulated ions
from the concentrated regions. The sharper interfaces, which grow faster than the rest of the interface,
have higher number of concentrated ions around them and therefore they are in the most critical state,

which have been focused-on for the computation of the feedback relaxation time tREL.

In the larger scale, the electro-migration displacement (Eq. 3) scales with ∼ t and the diffusion
displacement (Eq. 2) scales with the square root of time ∼

√
t . During the pulse both electro-migration

and diffusion are in action whereas during the rest period diffusion is the main drive. Since the average
reach for electro-migration is higher than the sole-diffusion, the range of reach in the rest period should
in fact be competitive with the pulse period. Therefore:

√
2DtOF F ≥ µ~EtON ±

√
2DtON (22)

and performing further, we get the maximum value of duty cycle D for effective pulse charging:
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(a) N = 200
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(b) N = 400
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(c) N = 800

Figure 6: Density ρ variations versus dimension-less relaxation time D
κl
tOF F for different charge amount

N .

Dmax = max


11 + |

~E|
RT

√
D

2f

2

± 1

 ≤
1
2 (23)

where the duty cycle of the 1
2 is the limiting value for the effective suppression of dendrites which

is achieved when the pulse frequency f gets indefinitely large (i.e. f →∞). This trend is visualized in
the Figure 5b, where the D = 0.4 shows very effective suppression, whereas the same charge amount
with the D = 0.8 does not relatively show efficacy for uniform growth.

The formation of local branches indicates that the concentration of ions in those specific sights is
high and therefore those sites should be focus locations for the feedback relaxation time tREL, which
highly depends on their respective radius of curvature rd [52]. For an individual ramified peak with the
radius of curvature rd, the time required for the concentration relaxation within the double layer tDL

REL

with the scale of ∼ κ is :

tDL
REL ≈

κ(κ+ rd)
D

� κl

D
(24)

where D is the diffusivity value for the ionic transport. The relaxation in the double layer with
the scale of ∼ κ occurs locally and since the scale of the double layer is far less than the cell domain
(κ� l), the relationship in the Equation 24 shows that the branched morphology has significantly faster
relaxation rate relative to the flat surface (tDL

REL �
κl

D
) .

The concentration relaxation could occur wither in the local or global scale. Therefore for the scales
extending to the entire cell domain (i.e. ∼ l), the feedback relaxation time tREL should be higher.
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Considering the curvature of the interface, the scale of transport for the time and space would lead to
the following comparison:

κ2

D
≤ tDL

REL ≤
κl

D
≤ tREL ≤

l2

D
(25)

Hence the relaxation time scale varies from ∼ κ2

D
in the individual peaks to the ∼ l2

D
in the larger

domain of the cell, and the control relaxation time in fact varies in such range. The density of the
electro-deposits ρ shown in the Figure 6 correlates inversely with the pulse period tON . This is due to
the exacerbated branching during the charge time which upon growing further gets more difficult to
halt. Vice versa, the finer pulse period tON provides better possibility for the suppression of dendrites.
Needless to mention that such pulse period tON could not indefinitely get short since the ions ultimately
would require enough time to reach the dendrites during this time and transform from ionic to atomic
species.

In addition, the density values ρ correlate with the relaxation time tOF F until reaching a certain
saturation limit. Since the length of the domain is much larger than the double layer (l� κ), the range
of feedback relaxation time tREL, shown by color gradient, would extremely reduce the charging time
with negligible compensation in the density of electro-deposits ρ. The underlying reason is that the
relaxation would let the ionic concentration to relax and uniform ionic distribution. Vice versa, extra
relaxation period will not helpful since the ionic concentration is already relaxed and the concentration
gradient has already vanished. The comparative density values based on the feedback relaxation time
tREL are in good agreement with the morphologies represented in the Figure 4.

The experimental data in the Figure 5 are higher values than the simulation results in the Figure 6.
The underlying reason is the inclusion of the voids in the porous dendrites as the dendrite body.

Moreover, imposing higher-than-limit relaxation time would slightly reduce the density ρ since addi-
tional concentration from the ambient electrolyte could be depleted in the into the non-reacting dendritic
sites. The atoms might excessively diffuse-in and therefore disturb the relaxed concentration, beyond
equilibrium. The negligible increase in the density of the dendrites ρ in the span of Figures 6a, 6b and
6c illustrates the effective-ness of the pulse charging method for the multitudes of the charge amount N
, which is the number of electro-deposited atoms.

The dendritic evolution can be divided into two distinctive stages of the transient and steady-state
(S.S.) growth regimes [51, 65], which has been illustrated in the Figures 7a, 7b and 7c in real-time
versus the deposited charge N . The initial transient regime in fact is stochastic in nature whereas the
steady state regime can illustrate an effective trend. Figure 7a represents the variation of the radius of
the curvature rd in the growing interface versus the deposition progress N (i.e. number of the atoms).
In this figure, the transition stage during the higher pulse time shows more fluctuation which indicates
the non-uniform regime of growth for the augmented pulse intervals. On the other hand during the
steady-state (S.S.) regime, radius of curvature correlates inversely with the pulse time interval tON ,
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(a) Radius of curvature rd. (b) Feedback relaxation time tREL. (c) Density ρ.

Figure 7: Transient and steady-state behavior in the radius of curvature rd , feedback relaxation time
tREL and the obtained density ρ based on the dimension-less pulse period D

κl
tON .

which indicates that the morphology is controlled for finer pulse periods.
Figure 7b represents the control relaxation time tREL versus the progress in electrodeposition during

the dendritic evolution, where the higher pulse intervals would require higher amount of control relax-
ation time tREL for the effective suppression of the dendrites. Also, the higher fluctuation for the higher
amount of pulse charge tON shows the higher control rate due to faster dynamics of variation in the
curvature.

The same trend of transition-to-steady state regimes has been observed in the Figure 7c, where the
highest fluctuation occurs for the higher pulsing time tON where it leads to the lowest density ρ after
reaching the steady growth regime.

In fact, the increasingly fast growth regime of the dendrites illustrates that the larger height h of the
electrodeposits, the higher the rate of their growth. This can simply be represented by the following:

dh

dt
∝ h

where the integration leads to the exponential relationship for the growth regime as:

h(t) ∝ exp(bt)

where b is the coefficient of the proportion. Setting exponential relationship causes a very high sensitivity
for the control relaxation time tREL to act vigilantly to the smallest perturbation in the ramified peaks.
The form of the control relation time tREL proportionally contains the exponential form in Equation 18.
Note that other forms of the relaxation time would as well could satisfy the boundary conditions given
in the Equation 16 such as talt

REL below:

talt
REL ≈

κl

D

(
rd + l

rd + κ

)
(26)

which has lower sensitivity for the radius of curvature rd relative to proposed control relation time
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tREL. This can be proven by calculating their derivative with respect to radius of curvature ( dtOF F

drd

)
and show that:

dtREL

drd

� dtalt
REL

drd

Thus from equations 18 and 26 and considering the negative value for both derivatives, one must
have:

κ− l
κ exp(rd)

κl

D
>

κ− l
(rd + κ)2

κl

D
(27)

since κ� l dividing by negative value of κ− l changes the inequality sign, therefore:

exp(rd) > (rd + κ)2 (28)

The equation 28 is obvious for a large values of radius of curvature rd since the exponential term in the
denominator will surpass the quadratic term in the right side. For an infinitesimally small value of the

radius of curvature rd one can use Taylor expansion as: exp(rd) ≈ 1 + rd+��
��*

0
O(r2

d) and one has:

κ(1 + rd) > (rd + κ)2

re-arranging gives:

r2
d + κrd + κ2 − κ < 0

which is a quadratic equation in terms of the radius of curvature rd and the root is found as:

rd =
√
κ− 3

4κ
2 − κ

2
Considering the infinitesimal value for thickness of the double layer (κ → 0) the value for rd would

be very small. Therefore for the most range of rd ∈ [ratom,∞) the exponential relationship given in the
Equation 18 remains the most sensitive to the variations in the radius of curvature rd as an effective
control parameter for suppression of the dendrites..

In practice, the noticing the formation of a ramified peak in the dendrite morphology for potentio-
static charging (constant applied voltage V ) could be obtained by discerning the sudden increase in the
current density, whereas for galvanic charging (constant applied current I) could be the sudden drop in
the potential value, where both of these events represent the runaway process (i.e. jump) in time.

Needless to mention that regardless of the utilized electrolyte, the comparative results are valid,
since the existence of the electrolyte medium only slows down the ionic interactions to the same scale
in both case scenarios.
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5 Conclusions

In this paper we have developed an variable pulse relaxation method in real-time for the minimization of
dendrites grown during electrodeposition. Our framework prevents the excessive branched evolution of
the growing microstructures where the control parameter is considered as the maximum curvature of the
interface. The corresponding feedback relaxation time tREL, hence is a function of the radius of curvature
where the sensitivity to the variation of radius is extremely hight by setting the exponential correlation.
The density of the electrodeposites, which has been computed as the measure of uniformity for the
morphologies, has been compared agains the traditional pulse-relaxation method. Both the density
values and the presented morphologies indicate that the run-away dynamics upon the branching of the
electrodeposits which has been controlled effectively by real-time tracking of the radius of curvature.
The methodology has potential for utilization of smart charging in rechargeable batteries and controlling
the morphology of the grown electro-deposits.

List of Symbols

N : Number of electrodeposits (i.e. charge
amount)
δ~rD: Diffusion displacement (m)
D : Diffusion coefficient of the electrolyte
(m2.s

−1)
~E : Local electric field (V.m−1)
δ~r: Total displacement of one ion (m)
f : Frequency of Pulse (s−1)
tON : Pulse period (s)
rd : Radius of curvature (m)
l : Scale of the domain (m)
tREL : Optimal rest period (s)
ε : the electrolyte permittivity (C.V −1.m−1)
kB : Boltzmann constant (kg.m2.s−2.K−1)
T : Temperature (K)
h : Highest dendrite y-coordinate (m)
Ic : Grayness threshold ([ ])
σ2 : Intra-class variance ([ ])
ω0 ; ω1 : Fractions of B&W groups divided by
Ic ([ ])
σ2

0 ; σ2
1 : Variances for ω0 and ω1 ([ ])

ρ: Density of the electrodeposits ([ ])

δt : Coarse time interval (s)
ĝ : Unit vector in a random direction ([ ])
δ~rM : Migration displacement (m)
V : Voltage (V )
P : Total period of pulse and rest (s)
D : Duty cycle ([ ])
tOF F : Rest period (s)
a: Atomic radius (m)
κ : Interfacial double layer thickness (m)
f(rd) : Augmentation factor as a function of rd

([ ])
z : Valence number ([ ])
e : Electron charge (C)
C∞ : Average ambient electrolyte concentra-
tion (mol.m−3)
Ii,j : Grayscale value ([ ])
Ji,j : Binarized grayscale value ([ ])
d : Diameter of the sandwich cell (m)
λ̂i : Normalized dendrite height ([ ])
tDL
REL : Double layer relaxation time (s)
talt
REL : Alternative expression for the relaxation
time (s)
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