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A B S T R A C T   

The nonuniform formation and growth of microstructures during the electrochemical charging of a battery is the 
main reason for the short circuit and capacity fade. The charge distribution across the micro-structure is the 
result of both local and global equilibrium which is a non-convex problem merely due to random placement of 
the atoms. As such, obtaining the charge equilibrium (QEq) is critical, since the amount of withheldcharge de-
termines the success rate of the bond formation for the ionic species approaching the microstructure which 
ultimately determines the morphology of the electrochemical deposits. Herein we develop a computationally- 
affordable method for estimating the charge allocation within such microstructures. The cost function and the 
span of the charge distribution correlates very closely with the trivial method as well as a conventional method, 
albeit having significantly less computational cost. The method can be used for optimization in non-convex 
problems, specially for those of randomly-formed morphology.   

1. Introduction 

Metallic anodes such as lithium, sodium and zinc are arguably highly 
attractive candidates for use in high-energy and high-power density 
rechargeable batteries [1–3]. In particular, lithium metal possess the 
lowest density and smallest ionic radius which provides a very high 
gravimetric energy density and possesses the highest electropositivity 
(E0 = − 3.04 V vs SHE) that likely provides the highest possible voltage, 
making it suitable for high-power applications such as electric vehicles. 
(ρ = 0.53 g.cm− 3) [4,5]. During the charging, the fast-pace formation of 
microstructures with relatively low surface energy from Brownian dy-
namics, leads to the branched evolution with high surface to volume 
ratio [6]. The quickening tree-like morphologies could occupy a large 
volume, possibly reach the counter-electrode and short the cell (Fig. 1a). 
Additionally, they can also dissolve from their thinner necks during 
subsequent discharge period. Such a formation-dissolution cycle is 
particularly prominent for the metal electrodes due to lack of interca-
lation1 [1]. Previous studies have investigated various factors on den-
dritic formation such as current density [7], electrode surface roughness 
[8–10], impurities [11], solvent and electrolyte chemical composition 
[12,13], electrolyte concentration [14], utilization of powder electrodes 

[15] and adhesive polymers [16], temperature [17], guiding scaffolds 
[18,19], capillary pressure [20], cathode morphology [21] and me-
chanics [22,23]. Some of conventional characterization techniques used 
include NMR [24] and MRI [25]. Recent studies also have shown the 
necessity of stability of solid electrolyte interphase (i.e. SEI) layer for 
controlling the nucleation and growth of the branched medium [26,27]. 

Earlier model of dendrites had focused on the electric field and space 
charge as the main responsible mechanism [28] while the later models 
focused on ionic concentration causing the diffusion limited aggregation 
(DLA) [29–31]. Both mechanisms are part of the electrochemical po-
tential [32,33], indicating that each could be dominant depending on 
the localizations of the electric potential or ionic concentration within 
the medium. Nevertheless, their interplay has been explored rarely, 
especially in continuum scale and realistic time intervals, matching 
scales of the experimental time and space. 

Recent works, have addressed the nucleation aspect of electrodepo-
sition via tuning surface energy and the radius of the interface [34,35]. 
Dendrites instigation is rooted in the non-uniformity of electrode surface 
morphology at the atomic scale combined with Brownian ionic motion 
during electrodeposition. Any asperity in the surface provides a sharp 
electric field that attracts the upcoming ions as a deposition sink. Indeed 
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1 Intercalation: diffusion into inner layer as the housing for the charge, as opposed to depositing in the surface. 
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the closeness of a dendritic spike to the counter electrode, as the source 
of ionic release, is another contributing factor. In fact, the same mech-
anism is responsible for the further semi-exponential growth of den-
drites in any scale. During each pulse period the ions accumulate at the 
dendrites tips (unfavorable) due to high electric field in bulging geom-
etry and during each subsequent rest period the ions tend to diffuse 
away to other less concentrated regions (favorable) [36]. The relaxation 
of ionic concentration during the idle period provides a useful mecha-
nism to achieve uniform deposition and growth during the subsequent 
pulse interval. Such dynamics typically occurs within the double layer 
(or stern layer [37]) which is relatively small and comparable to the 
Debye length. In high charge rates, the ionic concentration is depleted 
and concentration on the depletion reaches zero [38]; nonetheless, our 
continuum-level study extends to larger scale, beyond the double layer 
region [39]. 

Various charging protocols have been utilized for the prevention of 
dendrites [40], which has previously been used for uniform electro-
plating [41]. We have proven that the optimum rest period for the 
suppression of dendrites correlates with the relaxation time of the 
double layer for the blocking electrodes which is interpreted as the RC 
time of the electrochemical system [42]. We have explained qualitatively 
how relatively longer pulse periods with identical duty cycles will lead 
to longer and more quickening growing dendrites [43]. We developed 
coarse grained computationally affordable algorithm that allowed us 
reach to the experimental time scale (∼ ms). Additionally, in the recent 
theoretical work we indicated that there is an analytical criterion for the 
optimal inhibition of growing dendrites [44]. 

Additionally, the ultimate morphology of the dendritic electrode-
posits, depends on the possibility of the bond-formation when ion rea-
ches the outer boundary of the microstructure. The success of electron 
transfer in such approach would highly be determined to the amount of 
the charge presents in the electron transfer site. Therefore, in this paper, 
we elaborate on the charge distribution in equilibrium across the den-
dritic microstructures, where the placement of the stochastically-grown 
dendrites. Subsequently, we verify our method via comparison with 
trivial method, which is far more computationally expensive as well as a 
conventional package. This affordable method of computation for 
charge distribution can be utilized for any given microstructure, 
specially those of large scales. 

2. Methodology 

2.1. Computational method 

Fig. 1 represents the dendritic evolution in the lab scale as well as in 

our computations. The ionic flux is generated in response to the varia-
tion of the electrochemical potential, which is per see the result of the 
variations (i.e. gradient) of concentration (∇C) or electric potential 
(∇V). In the ionic scale, the regions of higher concentration tend to 
collide and repel more and, given enough time, diffuse to lower con-
centration zones, following Brownian motion. Such inter-collisions 
could be added-up in the larger scale and be addressed via diffusion 
length [43] 2 representing the average progress of a diffusive wave in a 
given time and is obtained directly from the diffusion equation [46]. On 
the other hand, ions tend to acquire drift velocity in the electrolyte 
medium when exposed to electric field and during the given time δt their 
progress by the drift velocity. 

Therefore the total effective displacement δ r→ with neglecting con-
vection3 would be: 

r→(t + δt) = r→(t)+
̅̅̅̅̅̅̅̅̅̅̅̅̅
2D+δt

√
ĝ + μ+ E→δt (1)  

where D+ is the ionic diffusion coefficient in the electrolyte, δt is the 
coarse time interval,4 ĝ is a normalized vector in random direction, 
representing the Brownian dynamics, μ+ is the mobility of cations in 
electrolyte and E→ is the local electric field, which is the gradient of 
electric potential ( E→=− ∇V ). Such vector sum is represented in the 
Fig. 1b. 

The probability of successful jump depends on how much charge 
each atom has from the sea of electrons. Such charge equilibrium would 
be obtained from the minimization of the total potential energy for the 
amorphous material, which is generally obtained by means of Taylor 
expansion as [48]: 

EA(Q) = EA0 +QA

(
∂E
∂Q

)

A0
+

1
2
Q2

A

(
∂2E
∂Q2

)

A0
+⋯ (2)  

where the second term in Eq. (2) is in fact the electronegativity χ and is 
defined by: 

χA =
∂E

∂QA 

Fig. 1. Observation/Modeling of dendritic propagation [36].  

2 The diffusion coefficient D+ is generally concentration dependent [45], due 
to dilute concentration in the electro-neutral region, we assume the negligible 
variations.  

3 Convection-wise, since the Rayleigh number Ra is highly dependent to the 
thickness (i.e. Ra∝l3), for a thin layer of electrodeposition we have Ra < 1500 
and thus the convection is negligible [47].  

4 δt =
∑n

i=1δti where δtk is the inter-collision time, typically in the range of fs. 
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since all the composing atoms in dendrites are identical the variation in 
fact breaks down to the cost function as the difference in the total po-
tential energy E(Q) based on the charge allocation as: 

E(Q) =
∑n

i=1

∑n

j=i+1

qiqj

di,j
(3)  

where di,j is the interatomic distance from i to j defined as: 

di,j = | r→j − r→i|

and r→i and r→j are the coordinates of the atoms relative to a reference 
point. Assuming that the set of charge values could be represented by the 
vector q = [ q1 … qn ] , one can interpret the optimization problem in 
the quadratic form as: 

minimize
1
2
qT Rq  

s.t.

⎧
⎨

⎩

∑n

i=1
qi = Q

0⩽qi⩽ne
(4)  

where the total energy is in fact the matrix from of Eq. (3) and the 
reciprocal distance matrix R is stablished: 

R =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1

d1,2
⋯

1
d1,n

1
d2,1

⋱ ⋮

⋮ ⋱
1

dn,1
⋯ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and n and e are the valence electrons and electron charge respectively. 
The first constraint in Eq. (4) means that the total sum of charges is a 
constant value Q given to the dendrite and the second and third con-
straints determine the capacity range of charge fraction for each atom in 
the microstructure. 

2.1.1. Locating minimum charge 
The energy difference defined by Eq. (4) as the cost function is de-

pends on the charge allocation in the atoms as well as their distance. 
Assuming the given charge qi to a charge, in order to minimize the en-
ergy term qiqj

2di,j
, the corresponding charges qj with the lower distance 

(closer) should contain lower relative charge values and vice versa. In 
fact the allocation of charges should be such that the most populated 
atomic regions in the crystal, formed by the random walk procedure, 
should contain the lowest fraction of the charge, since the denominator 
in the Eq. (3) is quite large in those regions. Such position in fact could 
be obtained for the case of even distribution in the atomic charges. 
Assuming qmin as such position, the value of the reciprocal distance sum 

1
dmin,k 

should be the maximum: 

max
k

∑n− 1

i=1

1
dmin,k

(5) 

The minimum charge qmin via this expression signifies it’s the closest 
proximity to the other charges. 

2.1.2. Charge distribution 
Finding the closest proximity of the minimum charge qmin in the Eq. 

(5) ensures the closest radial distance to the surrounding atoms. In other 
words, the largest allocation of charge magnitude should be given to the 
atoms farthest from the most compact regions. Therefore, starting from 
the minimum charge qmin as the reference and moving outward radially, 

any charge distribution should have an increasing trend, and there will 
be no sensitivity for variation in the azimuthal direction as: 

δq
δθ

= 0 

As well, the quadratic form of the potential energy E(Q) in Eq. (3) 
suggests that the charge distribution in the radial direction has rounded- 
up geometry, which we translate in the radial direction r to: 

δ2q
δr2 ⩾0 

Performing numerical segmentation, this typically leads to 
qi+1 − 2qi +qi− 1 ≥ 0 for consecutive charges. Since the atoms possess 
non-uniform spacing, we arrive at: 
δqk+1

δr − δqk
δr

dk+1,k− 1
⩾0  

noting the difference in the slope m we arrive the following: 
qk+1 − qk

dk+1,k
−

qk − qk− 1

dk,k− 1
= m  

therefore the value of charge qk+1 consecutively can be obtained as: 

qk+1 = qk +
dk+1,k

dk,k− 1
(qk − qk− 1)+mdk+1,k (6) 

The Eq. (6) assigns a charge value to atom k+1 based on charge 
values of the 2 preceding atoms k − 1 and k, starting from the minimum 
charge located in the previous section. Such iteration has been per-
formed for multiple values of the variation difference m for the charge 
distribution based on the constraints in the Eq. (4) such that the mini-
mum value of the objective function (Eq. 3) is obtained. The outlined 
algorithm has been visualized in the Fig. 2 based on the parameters 
given in the Table 1. Fig. 3 shows the charge distribution within the 
given stochastically-developed microstructure, where the location of the 
minimum charge is highlighted. The black lines and green vectors 
represent the iso-potential contours and electric field respectively. 

2.2. Sample computation 

We carry out the sample computation for the method we have 
developed and we compare it against the conventional MATLAB 
framework, as well as the trivial solutions, and filtered trivial solution. 
We study the one dimensional case where atoms are allocated in a 
straight line based on the numbers given in the Table 2. Here we propose 
the following methods to compare to: 

2.2.1. Analytical solution 
Since the central position from Eq. (3) can be regarded as the mini-

mum charge point, we can interpret that the center of the 1D line could 
be the location for the minimum charge. From the constraints in the Eq. 
(4), the type of analytical function can be extracted. The charge should 
have the increasing slope condition as well as positive second derivative 
for the formation of the rounded-up shape. If x is the one dimensional 
coordinates, therefore analogous to the given constraints the forms are 
obtained as: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ρ
∂x

⩾0 ∼ αx

∂2ρ
∂x2⩾0 ∼ βexp(x)

where {α, β} > 0. The line will have a symmetric charge distribution, 
one could study one of it’s identical halves, using the combinatorics the 
two forms via absorbing the two coefficients α and β into the new pre- 
factor a. Considering the continuum-scale linear charge density ρ(x)
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the charge distribution would have a form of: 

ρ(x) = axexp(bx)

Therefore the energy minimization in Eq. (4) will translate into the 
following: 

minimize
∫ l

0

ρ(x)
x

dx  

s.t.

{∫ l

0
ρ(x)dx = Q

0⩽ρ(x)⩽ne
(7)  

2.2.2. Exact solution 
Assuming: ρ = axebx, one needs to find two free parameters a, b. The 

total energy E(Q) can be obtained as: 

E(Q) =
a
b
(exp(bl) − 1)

and the constraints will be obtained using the chain derivative rule as: 

Q =

∫ l

0
axexp(bx)dx =

a
b

xexp(bx)|l0 −
∫ l

0

a
b

exp(bx) =
(

al
b

ebl −
a
b2(e

bl − 1)
)

Since the distribution form ρ(x) is increasing the boundary condition 
should satisfy at the end (x = l) and therefore: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a
b

(

lebl −
1
b
ebl −

1
b
)

)

= Q

alebl⩽ := 1

a⩾0 

Considering the maximum value in the inequality, we arrive to the 
following via combination: 
(

1
b
−

1
abl

−
a
b2

)

= Q 

This is a quadratic equation versus the exponent b. Therefore, 
assuming a = 1 it can be solved and the charge density is obtained as: 

Fig. 2. The charge-equilibrium pseudo-code.  

Table 1 
Parameters for sample computation [43].  

Parameter Symbol Value Unit 

# atoms n 300 []

Diffusivity D+ 1.4× 10− 14  m2.s− 1  

Permittivity ε  64 []

Temperature T 293 K 
Domain length l 180 nm 

Voltage ΔV  0.1  V  

Fig. 3. Dimension-less Charge distribution across the microstructure. The 
minimum charge is illustrated with square. 

Table 2 
Verification parameters.  

Q n xmin  xmax  qmin  qmax  

11 11 − 10 10 0 3.66  
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ρ(x) = xexp

((
l − 1 ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(l − 1)2
− 4Ql

√

2Ql

)

x

)

(8)  

2.2.3. Simplified solution 
The exact form of charge distribution in Eq. (8) can be approximated 

with a simpler form. Here we prove that the exponent has an upper 
bound of 1l : 

l − 1 ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(l − 1)2
− 4Ql

√

2Ql
⩽

1
l 

Proving for maximum case one has: 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(l − 1)2
− 4Ql

√

⩽(1 − l)+ 2Q (9) 

Since the LHS is positive value, the RHS we must have: 

l ≤ 2Q+ 1 

As well the square sign should be non-negative, therefore: 

(l − 1)2
− 4Ql⩾0  

l ≤ 2Q+ 1 − 2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Q(Q + 1)

√

Taking the inequality (9) to the power 2 we get: 

0⩽Q(Q+ 1)✓  

which is always true and the upper bound is determined. Therefore the 
exponent could be considered as b := 1

l . Thus the sum condition gives: 

Q =

∫ l

0
axex

l =

(

alxe
x
l −

∫ l

0
ale

x
l

)⃒
⃒
⃒
⃒
⃒

l

0

= al2  

and the coefficient a is updated accordingly versus the total charge sum 
Q. Hence, the simplified charge would be: 

ρ(x) = Q
l2xex

l (10) 

Note that this is valid for x⩾0 and the other (negative) half can be 
established from symmetry. 

2.2.4. Enhanced trivial method 
Using the trivial method, we iteratively scan the charge distribution 

{q1,…, qn} which minimizes the total energy E(Q) in Eq. (4) from the all 
possible permutations from combinatorics. The approximate iterative 
solution could be finding the non-zero integer distribution to the pre- 
determined sum constraint Q given as: 

q1 +⋯+ qn = pQ (11)  

where, due to integer nature of the solution, the fixed total sum has been 
augmented p-fold to allow higher precision of the distribution and the 
resulted distribution will ultimately scaled back p-fold to satisfy the sum 
constraint in Eq. (4). As well, the range constraints could been translated 
into the followings to save a significant portion of the trivial solutions 
from Eq. (11): 
{

qk+1⩾qk
qk+1 − 2qk + qk− 1⩾0 (12) 

The next comparison has been performed with the conventional 
MATLAB package function fmincon in terms of cost and accuracy. Since 
this function locates the local minima, it was run for 5 different initial 
distribution values in the close proximity of the analytical solution, to 
target the global minimum. As well, the initial condition was given 
based on the analytical solution in the Eq. (10). 

The resulted distributions have been visualized in the Fig. 4a and the 

corresponding significant numbers are compared in the Fig. 4a. It is 
worth noting that the computational time required for the trivial case 
post-filtration is significantly less than the filtered cases via Eq. (12), 
with the factor of ∼ 105. 

3. Results & discussions 

Finding the minimum energy E(Q) for randomly- 
formedmicrostructures is usually a non-convex problem, which makes 
it difficult to solve. This is merely due to stochastic allocation of the 
atoms. Since the reciprocal distance matrix R is symmetric (Ri,j = Rj,i), 
for any given matrix B there exists matrix Z such that: 

R = B− 1ZB 

Due to symmetry, the trace of reciprocal matrix tr(R) is the sum of it’s 
eigenvalues λi. Since, the distance of each atom to itself is zero, tr(R) = 0 
and hence: 

tr(R) =
∑

λi = diag(R) = 0  

the zero-sum constraint shows that at least one eigenvalue is negative. 
Therefore the problem is not convex. 

The flowchart 2 shows the information flow for determining the 
charge allocation leading to the minimum energy E(Q), which is mainly 
divided into two compartment of locating the minimum charge, and 
establishing acurved-upcharge distribution. Such division in fact is an 
approximation, providing a significantly less computational cost versus 
the whole-inminimization of the total energy E(Q) given in the Eq. (3). In 
fact, the minimization of the reciprocal distance sum in the Eq. (5) en-
sures that the most populated central (body) regions would be the 
location of the minimum charge and vice versa, the outer (boundary) 
regions would possess the highest portion of the charge sum, since they 
will be farthest from the rest of the atoms to create large potentials. This 
has been illustrated in the random dendritic microstructure illustrated in 
the Fig. 3. Such allocation means that the outer atoms in fact will have 
higher possibility for the electron donation rather than the inner layers. 

The comparative analysis of our method has been performed for the 
1D arrangement of the atoms based on the Table 2. The verification has 
been illustrated versus the enhanced trivial search method as well as the 
commercial package. The accuracy comparison is shown in the Fig. 4a 
and the effectiveness is represented in the Fig. 4b. 

Additionally the advantage of the developed method is that the result 
is independent of the initial condition, as opposed to the commercial 
package. Typical methods of finding the optimum solution requires 
wither restricting the search within a convex set [49], or relaxing non- 
convex constraints [50,51]. Our method is numerically following the 
same track, searching iteratively via small perturbations in the rounded- 
ness (Fig. 5a) to obtain the minimum energy E(Q). Additionally the 
developed method finds the optimum charge distribution via the phys-
ical and spatial awareness of the curved-up dispersal of the charge. Such 
convex hull is illustrated in the Fig. 5b, where the colors qualitatively 
represent the relative charge values. 

Ultimately, the role of the peaks in the boundary of the microstruc-
ture for accumulating charge relative to the inner and flat regions lies in 
it’s geometry (i.e. radius). The sharp boundary determines competi-
tiveness of the two neighboring zones over a physical parameter. This is 
analogous to the build-up of stress ΔP in the nucleation of microstruc-
ture via the following relationship [34]: 

ΔP = γ
(

1
R1

+
1
R2

)

where γ is the corresponding surface energy and R1 and R2 are the 
respective radius of curvature in a given orthogonal directions. The 
sharp interface, therefore is meta-stable and possess higher energy, 
which is known as Kelvin effect [52]. 
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4. Conclusions 

In this paper, we developed a computational method for determining 
charge equilibrium distributionwithin the given stochastically-evolved 
dendritic microstructure. Our computationally affordable method, 
which has mainly been divided to simpler compartments, has been 
compared against the conventional method as well as the commercial 
package. 

The significance of this method is the independence from the initial 
condition and very low computational cost. Our method could be used 
for determining the charge allocation in a larger-than-conventional 
clusters of microstructures where the convex optimization is not 
feasible. the charge magnitude would determine the reaction probabil-
ity, the rate of propagation and the densification of microstructure 
during the branched evolution. 
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