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Abstract

The dendritic growth in rechargeable batteries is one of the hurdles for the utilization of high

energy-density elements, such as alkaline metals, as the electrode. Herein we explore the preventive

role of the curved electrode surface in the cylindrical electrode design, versus the flat geometry,

on the stochastic evolution of the dendritic crystals. In this regard, we establish a Coarse-Grained

(CG) Monte Carlo paradigm in the polar coordinates (r, θ), which runs in a larger scale of time

and space (∼ µs, ∼ nm ) than those of inter-ionic collisions (∼ fs,Å ). Subsequently, we track

the density and the maximum reach of the microstructures in real-time, and we elaborate on the

underlying mechanisms for their correlation of the relative dendrite measure with the electrode

curvature. Such quantification of the positive impact of the curvature on suppressing dendrites

could be utilized as an effective longevity design parameter, particularly for the cases prone to

dendritic propagation.

Keywords: Dendritic evolution, Electrode curvature, polar coordinates, packing density, prop-

agation reach.
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1 Introduction

The escalating energy demand during the past decades has necessitated the development of more efficient

energy storage systems [1, 2]. Among the various technologies, the batteries have garnered significant

attention due to their clean, low-carbon, high energy density. In particular, they have recently been

utilized in the wide range of portable electronics, manufacturing, the service industry [3], and the

renewable energy sector [4, 5]. In this context, lithium-ion batteries (LIBs) have been extensively

researched, owing to their high energy density, low self-discharge rate, lack of memory effect, high open-

circuit voltage, and long lifespan [6]. The expansion of lithium-ion batteries, with over 5 billion currently

in use worldwide, attests to the technological maturity and widespread acceptance of this technology

[7], which could be a viable solution for the power interruptions in the United States that result in an

annual cost of around $80 billion [8].

Despite the numerous advancements, the electrochemical degradation of lithium-ion batteries remains

a critical concern [9, 10]. Especially, the dendritic growth, resulting from the formation of conductive

filaments on the lithium electrode, can lead to short-circuiting and thermal runaway, which ultimately

leads to battery failure [11, 12].

The precise mechanism of dendritic growth is not fully understood, but it is widely accepted that

it is influenced by various factors such as complexity in the current density[13, 14, 15], electrolyte

composition [16], and electrode geometry and micro-scale curvature [17, 18] surface defects (i.e. kinks)

[19] and interaction with the solid electrolyte interphase (SEI) [20, 21].

Several studies have attempted to improve the resistance to dendritic growth via shielding with

alternative compounds [22], imposing external magnetic fields [23], guiding scaffolds [24], and using 1D

nano-fiber arrays in the polymer electrolyte [25].

From the physical perspective, the dendritic microstructures can be characterized spatially via poros-

ity [26], tortuosity [27, 28], and MacMullin Number [29]. However, a comprehensive understanding of

the relationship between electrode geometry and dendritic growth remains elusive. Previous and recent

characterization methods include coupling the electrochemical potential to the stress and the formation

of micro-cracks [30, 31] and phase-field modeling [32, 33], and Coarse-grained modeling [34, 35].

The tendency for dendritic development primarily is the due to non-equilibrium kinetics of ionic

transportation and chemical bonding than the equilibrium-based thermodynamics. The formation of an
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(a) Planar electrodeposition (x, y). l: inter-
electrode distance, W : domain width, ymax:
highest dendrite elevation. The vector D repre-
sent the randomness of the diffusion event while
the electro-migration vector M is directed to-
ward tips.
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(b) Polar characterization (r, θ): RI , RO radii of
inner and outer circles. r⃗1 and r⃗2: the position
vector before/ after the displacement. δr⃗ and
δθ:the change in the radial distance and angle, δx
and δy: the horizontal/vertical displacements.

Figure 1: Parameters of the dendritic growth in the planar (a) and polar (b) electrodeposition, which
are defined by W × l and inter-circular area between the radii of RI and RO respectively, which pertain
the identical electrodeposition real-estates (l = 2πRI), the inter-electrode distance (l = RO − RI) and
free deposited ions N .

extended branches due to the higher accessibility of the upcoming ions to the outer asperities than the

inner voids. Such imbalance is exacerbated additionally due to the formed electric field, which is biased

toward the tips.

This paper presents a detailed investigation of the effect of polar and planar configurations of

electrode-posited microstructures on dendritic growth. Starting from the translation of Cartesian (x, y)

to polar (r, θ) coordinates, we compare the cylindrical and rectangular electrodepositions and determine

the density in both mediums. Our findings provide insights into the critical role of electrode curvature

in dendritic growth and pave the way for the development of improved battery designs with enhanced

performance and safety.
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2 Methodology

We tune the geometry as an effective, convenient and, accessible factor in order to increase the tendency

of the ions for getting diverted from the growing tips and get directed into the inner voids. The formation

of the voltage profile and subsequent electric field is a deterministic factor in the ionic movement,

particularly the dominant factor in high-voltage and low-concentration applications. In this regard, one

could calculate the initial electric field for both planar and polar electrode geometries. Based on the

Gauss law [36] one has:

∇2V = e (zaCa − zcCc)
ε

(1)

where V is the voltage value, za, zc and Ca and Cc are anionic and cationic valence and concentration

and ε is the vacuum permittivity of the electrolytic medium.

2.1 Equivalent Arrangement

Figures 1a and 1b illustrate the planar and polar electrode layouts, which are characterized by the

dimensions W × l and inner and outer radii RI , RO respectively. In order to define equivalent con-

figurations they should both contain identical properties, to leave out only the impact of curvature.

Therefore other than equal inter-electrode voltage ∆V and number of deposited ions N , geometry-wise

they should both contain identical areal real-estate A for electrodeposition (Axy = Arθ) as well and

identical inter-electrode distance l (lxy = lrθ), where the subscripts xy and rθ denote the planar and

polar frameworks. Translating these two equations leads to:


Axy = Arθ → W = 2πRI

lxy = lrθ → l = RO − RI

(2)

The radius of the curvature RI is typically significantly larger than the inter-electrode gap l (RI ≫ l).

In order to differentiate between the planar and polar configurations, we consider the square domain

(W = l), which leads to:
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Ê

(b) Electric field variation Ê versus the non-dimensional
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Figure 2: The Initial electric potential V̂ and electric field Ê versus the radius ratio RI

RO

(or curvature

ratio κO

κI

). The extreme limit of RI

RO

→ 1 resembles the flat electrode arrangement.


RI = l

2π

RO = (1 + 2π) RI

(3)

In this context, the polar coordinates (r, θ) deems the most appropriate and the Equation 1 turns into
d

dr

(
r

dV

dr

)
≈ 0, via assuming the electroneutrality for the substantial bulk space of the inter-electrode

medium. Solving with the respective potentiostatic boundary condition of V (RI) = VI , V (RO) = VO

one gets:

V̂ = ln (r) − ln (RI)
ln (RO) − ln (RI)

= ln (1 + 2πr̂)
ln (1 + 2π) (4)

where V̂ = V − V−

V+ − V−
is the dimensionless voltage normalized into the inter-electrode potential and
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Figure 3: Schematics of the coarse-grained modeling for dendritic evolution, illustrating the diffusional
δr⃗D(red) and migrational δr⃗M (blue) displacements. The coarse-grained model combines the average
of multitudes of smaller scale diffusion moves, shown as pink vectors, in one single move. ed circles:
free ions, green branches: dendrites, blue vectors: electric field, gray lines: electric potential contours.
Reprinted with permission from Ref. [35] Copyright 2019 American Physical Society.

r̂ = r − RI

RO − RI

is dimensionless radial measure normalized to the inter-electrode distance. Thus 0 ≤

r̂, V̂ ≤ 1. Respectively, the initial electric field Er will be solely in the radial direction, merely due to

initial azimuthal symmetry, and will be obtained as:

Êr = − 2π

ln (1 + 2π)
1

1 + 2πr̂
(5)

where Ê = E.
RO − RI

V+ − V−
is the normalized electric field with respect to the equivalent planar arrange-

ment.

Figures 2a and 2b describe the profiles for the initial electric potential V̂ and electric field Ê respec-

tively for various ratios of inner to outer radii RI

RO

, which determines the outstanding curvature. The

distributions for the planar arrangement are also given by approximating when RI → RO.

2.2 Stochastic Modeling

In order to extend the time-scale of the simulations, we use the previously-developed and verified

coarse-grained modeling [34], which extrapolates the movements in the inter-atomic collisions and maps

the average progress of the multitudes of inter-atomic collisions to a single move, as illustrated in the

6



Figure 3 and significantly reduce the computational cost.

Such averaged electrochemical displacement is the result of the two distinct factors for ionic motion,

where the former is the diffusion drive δrD from high-to-low concentration zones, employing mean-square

displacement [37] as:

δrD =
√

2Dδtĝ (6)

where D is the diffusivity of the ions in the electrolytic solution and ĝ is a random unit vector,

representing the random (i.e Brownian) motion. In fact, in the atomic scale (∼ nm), the random

unit vector ĝ tends to uniformize the concentration map, where each ion with the collide-and-repel

interaction during the random walks (i.e Brownian dynamics) will gradually move from the higher-to-

lower concentration zones after repetitive moves. The latter drive is due to the effect of the external

electric field E on the charge carriers, converging to a constant drift velocity of µE after a short period

of initial acceleration. Therefore, their electromigration displacement δrM in the same time interval δt

would be:

δrM = µEδt (7)

Consequently, the total ionic displacement δr is the sum of the aforementioned factors as:

δr = δrD + δrM (8)

which is visualized in Figure 3. The simulation is performed for both planar (Figure 1a) and polar

(Figure 1b) electrode arrangements, as follows:

1. Construct an initial electrode geometries with the presumed given voltage values.

2. Establish the initial electric field, which analytically is obtained in the Equation 5, and the planar

case would be specific to r̂ → 1.

3. Distribute the specified number of ions N randomly in the inter-electrode space.

4. Let the ions move based on the displacement relationship given in the Equation 8 for the specified

coarse time increment δt. For planar simulation of the scale lSIM , the periodic boundary condition

(PBC) is applied, such that if an ion exits the boundary it automatically enters from the opposite side

(x+lSIM for exiting from left and x−lSIM for exiting from the right). As well, for both Planar and Polar
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simulations, if an ion leaves the domain from the upper (outer) electrode, that move is canceled and the

random motion is repeated until it falls within the inter-electrode space. In this regard, the polar move

has been expressed in terms of the planar movements and reverted to the polar components. Hence, if

(r1, θ1) is the initial position of an ion the next Cartesian position (x2, y2) after the time interval of δt

is obtained as:


x2 = r1 cos θ1 + δrD,x + δrM,x

y2 = r1 sin θ1 + δrD,y + δrM,y

where the □x and □y notions represent the x and y components of the respective displacements.

Subsequently, the polar form of the position at the end of time increment δt would be:


r2 =

√
x2

2 + y2
2

θ2 = tan−1
(

y2

x2

)
where 0 ≤ θ2 ≤ 2π.

5. After the movement, if there is an overlap with an ion to the bottom (inner) electrode or anywhere

in the body of the dendrite atoms, it is attached in the inter-specified inter-atomic distance from the

overlapping position. Such condition could be expressed as:

|rION,i − rDND,j| ≤ dBond

Where rION,i and rDND,i are the position of the moving ion i and overlapping dendrite atom j

respectively and dBond is inter-atomic bond distance. The probability of reaction p upon overlap is

a material-dependent property, which correlates with the rate of electron transfer kET obtained from

Marcus Theory [38] and is broken-down to several parameters [39]. For simplicity and focus on the

geometric differences between planar and polar frameworks it has been assumed to be unity (p =

1), which means that the ion turn dendritic immediately upon getting close enough to the dendritic

structure.

Subsequently, a replacement ion is released from the counter-electrode in a random position on its

surface (i.e. rION = RO , 0 ≤ θION ≤ 2π) to maintain the constant number of free ions N . In this

case, since the growing dendrite is physically connected to the electrode, it will carry the same potential
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Parameter Value Unit Ref. Constant Value Unit Ref.
D 2.58 × 10−10 m2.s−1 [35] NP lanar {600, . . . , 1800} [ ] Assumed
e 1.6 × 10−19 C [40] NP olar {600, . . . , 7500} [ ] Assumed

kB 1.38 × 10−23 J.K−1 [40] l 130a Å Assumed
T 298 K STP[41] RI 29 Å Eq. 3

dBond 2a Å [42] RO 186 Å Eq. 3
a 1.45 Å [42] µ 10−8 m2.V −1.s−1 Eq. 10

V̂+ 1 [ ] Normalized δr 0.18 nm Assumed
V̂− 0 [ ] Normalized δt 0.1 ns Assumed

Table 1: Simulation Parameters.

which provides a third boundary condition for solving the Equation 1, as VDEND = V− and the real-time

electric field is re-calculated. Meanwhile, the electroneutrality is assumed (ρ ≈ 0), leaving the variation

in the voltage and electric field distributions solely due to changes in the geometry of the growing

dendritic branches.

In real-time computation the potential is achieved through solving the following Laplacian relation-

ship for the polar coordinates:

∇2V = d2V

dr2 + 1
r

dV

dr
+ 1

r2
d2V

dθ2 (9)

where the range of parameters is RI ≤ r ≤ RO and 0 ≤ θ ≤ 2π. Adopting the finite difference

scheme we divide the domain into the radial δr and azimuthal δθ. Hence Vi,j represents the potential

in the radial distance ri and azimuthal orientation of θj and, the Equation 9 gets simplified into:

Vi+1,j − 2Vi,j + Vi−1,j

δr2 + 1
ri

Vi+1,j − Vi,j

δr
+ 1

r2
i

Vi,j+1 − 2Vi,j + Vi,j−1

δθ2 ≈ 0

where δr and δθ are the length of segmentations in their respective directions. Re-arranging versus

the neighbor values one gets:

Vi,j = Q1Vi+1,j + Q2Vi−1,j + Q3Vi,j+1 + Q4Vi,j−1

where the Qis are the quotients obtained as:

Q1 = riδθ2

A
(ri + δr) Q2 = r2

i δθ2

A
Q3 = Q4 = δr2

A

and A is an areal coefficient attained as: A = 2r2
i δθ2 + riδrδθ2 + 2δr2. The boundary conditions are
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updated in every iteration and consequently, the electric field vectors Er
i,j and Eθ

i,j are obtained via the

finite difference method as:



Er
i,j = −Vi+1,j − Vi,j

δr

Eθ
i,j = − 1

ri

Vi,j+1 − Vi,j

δθ

6. The simulation is stopped either when the number of atoms in the dendrite reaches the prescribed

value of N , or the growing dendrite has reached the counter-electrode.

2.3 Density Computations

In order to address the morphological aspects of the electrodeposits, two distinctive measures have been

defined and tracked throughout the simulation. The first measure ĥ represents the maximum reach of

the electrodeposits. Hence, normalizing to the maximum value for planar and polar coordinates yields:

ĥxy = ymax

l
ĥrθ = rmax − RI

RO − RI

where 0 ≤ ĥxy, ĥrθ ≤ 1 and ymax and rmax represent the maximum height and radial distance of

the dendrite in the planar and planar configurations respectively. The second measure is the density

ρ, which represents the packed-ness of the crystals, and is defined spatially by the filling-to-total areal

ratio. For the rectangular domain defined with the scale of l = 2πRI (Equation 3), the density ρxy

would be:

ρxy = nπa2

l2
1

ĥxy

where n is the real-time number of deposited atoms. Respectively for the polar electrodeposition,

one gets the density ρrθ as:

ρrθ = na2

4πR2
I

1
ĥrθ

(
1 + πĥrθ

)
therefore the relationships are inverse for the planar arrangement and non-linearly opposite correla-

tion for the polar configuration.
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Figure 4: Planar dendrite morphologies grown versus the number of deposited atoms N . red: dendrites,
blue: free ions, green: electric field vectors.

Figures 4 and 5 show sample-grown morphologies of the dendrites for the specified number of de-

posited atoms N , based on the simulation parameters presented in the Table 1. Meanwhile, the mobility

µ is simply obtained from the Einstein relationship as [43]:

µ = De

kBT
(10)

As well the densities ρxy, ρrθ and the maximum dendrite reach ĥxy, ĥrθ are tracked in real-time and

visualized in the Figure 6.

3 Results & Discussion

Analyzing the effective terms for the ionic flux, represented in the Equations 6 and 7, one notices that

while the diffusion term tends to average out the ionic distribution (i.e. favorable), the electromigration

term tends to direct the ions in the specific directions and grow branches (i.e. unfavorable). In such a

trade-off one could define a measure for dendricity λ as the ratio of their respective movements, which

is simplified into:

λ = δrM

δrD

= e

kBT

√
Dδt

2 E

in order to compare the polar arrangement with the planar version we define the notion of their ratio
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Figure 5: Dendrite morphologies are grown on the curved surface, versus the number of deposited atoms
N . red: dendrites, blue: free ions, green: electric field vectors.

as □̂ = □Polar

□Planar
, hence considering the equivalent definitions in the section 2.1 one gets the dendricity

ratio λ̂ as:

λ̂ = Ê

Particularly, for the initiation state, one has:

λ̂ = 2π

ln (1 + 2π)
1

1 + 2πr̂

which from the Figure 2b, means that the dendritic tendency of the polar configuration is higher

than the planar version during the initiation growth, and lower in the later stages of the propagation.

In fact, for the curved interface, the microstructures initially grow faster (i.e. disadvantageous) and

in return, during the later stages they build up at a slower pace (i.e. advantageous) than the planar

electrodes. Such, naturally-formed electric profile merely due to the electrode curvature commensurates
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ĥxy
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Figure 6: Tracking of the microstructure densities ρxy, ρrθ and the maximum reach measure ĥxy, ĥrθ

versus the number of electrodeposited atoms for the planar and polar electrode configurations.

with the form of optimized charging for the extreme inhibition of the dendrites [44], which, in the trade-

off, ultimately forms a more packed microstructure during the entire charging period, as shown in the

Figure 6 for multiple number of deposited atoms N . Meanwhile the location of |Exy| = |Erθ| would be

as:

r̂ = 1
ln (1 + 2π) − 1

2π
≈ 0.34

which represents the radial distance, where the growth rate of both planar and equivalent polar rates

are identical. As well, the oscillatory behavior in the evolution of the density versus the dendritic build

up is due to random placement of the upcoming ions within the microstructure, where any connecting

ion to other periphery reduces the density whereas any infiltrating ion to the inner voids increases the

respective density.

Considering the scholastic nature of the dendritic evolution, the morphologies obtained from the

planar and polar arrangements, shown in the figures 4 and 5, one notices that in average the polar

arrangement lasts substantially larger both in terms of number of atoms and the time duration before

the short circuit. Considering the values given in the Table 1, the respective rations of N̂Short and t̂Short

are obtained from 4 separate simulations, to obtain more confidence in the analogy, with identical initial

parameters as:


N̂Short = 3.85 ± 0.28

t̂Short = 3.81 ± 0.14
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(b) Curved electrode geometry.

Figure 7: Schematics of the feasibility of the pathway for the electrodepositing ion (blue), when exposed
to planar (a) versus the curved (b) geometry of the electrodes. The tendency of the movement is shown
by the red and green vectors which are toward the peak of the dendrites (highlighted red) versus the inner
regions (highlighted green). As shown, the curved geometry provides more openness for the formation
of packed micro-structures.

As well, the ratio of the average current before the short circuit ˆ̄I is obtained as:

ˆ̄I = N̂Short

t̂Short
≈ 1

Meanwhile, the ratio of the average electric field ˆ̄E is additionally obtained as:

ˆ̄E =
∫ 1

0

2π

ln (1 + 2π)
1

1 + 2πr̂
dr̂ = 1

which infers as the direct correlation between the average current density ˆ̄I and the electric field ˆ̄E.

Such direct correlation specially evident in the beginning of the charging process since the concentration

is uniform and the sole drive for the ionic motion is the electromigration from the externally-imposed

electric field E. As well, it additionally gets obvious for the case of dilute concentrations (C ↓↓) and

high-power applications (E ↑↑). In this regard, the dominance of the electromigration term over the

diffusion has been recently illustrated [45], which proves the hypothesis above.

In addition to tuning of the electric field in favor of the polar electrode that was explained earlier,

other factor would be the concentration. Comparing the areas of the planar and analogous polar electrode

arrangement one gets:
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AP olar

AP lanar

= π + 1 ≈ 4.14

which implies the inverse ratio for the average concentration, as C̄P olar ∼ 1
4C̄P lanar and the respective

electrodeposition will occur more smoothly.

Geometry-wise, the advantage of the curved electrode is that the the larger counter-electrode has

higher dispersion (less concentration) of ions and the growing microstructures have more distancing

in the outer regions as shown in the Figure 7. Hence, the upcoming ions initially face larger branch

separation and get more chance to move inside and form a packed structure. In fact, for the polar

arrangement, we take advantage that during later stage of the dendritic growth there is larger opening

due to larger radius.

Since both planar and polar frameworks carry identical electrolyte and diffusivity D, the diffusion

terms gets cancelled out for obtaining the dendricity ratio λ̂. However, it is important to note that the

electrodeposition is the consequence of the ionic transport within the electrolyte (i.e. diffusion) and later

on, the ionic reduction upon reaching the electrode surface (i.e. reaction). Since such diffusion-reaction

dynamics occurs in series order, the event of the smaller pace will be controlling the total effective flux

J of electrodeposition. Hence, the respective comparison between the polar and planar configurations

assumes the abundance of the ions in the immediate vicinity of the dendrite interface, which typically

occurs during the initial stages of the charging as well as the prolonged charging for the under-limiting

currents (J < J∗ and J∗ is the current of ionic exhaust in the electrodeposition where C → 0) [46].

However during the extreme currents where the ions exhaust on the electrode surface (J > J∗), the

feeding rate from the bulk solution becomes deterministic and the diffusivity of the electrolytic medium

D becomes controlling factor for electrodeposition rate.

Needless to mention that, assuming unity for the probability of reaction (p = 1), ultimately generates

more pronounced dendrites and obtaining the material-dependent smaller probability values will still

leave the polar arrangement more advantageous than the planar version (ρPolar > ρPlanar, ĥ < 1, N̂Short >

1), albeit with a different ratios. As well, for the case scenarios of the lower curvature, where interface

radius turns indefinitely large (RI ≫ l), the planar and equivalent domains will turn to a thin strip

(W ≫ l) and thin ring (RI ≈ RO), where the effect of the curvature will become negligible and packing

densities will become similar. However, for the square planar arrangement (W ≈ l), the periodic
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boundary condition extends the results for case scenarios aspect ratio (RI ≫ l) leading to identical

packing density.

Finally, the density calculation ρ for this study, which inversely correlates with the dendricity λ, has

been defined as the occupied fraction of the domain by the atoms. As well, other measures could be uti-

lized in this regard, such as average coordination number, the orientation of branches and the tortuosity

of the growing interface [47]. The higher average coordination number infers that each individual atom

accommodates more neighbors leading to a more packed structure, and vice versa. As well, the more

directed growth with similar branch orientation signifies more ordered pattern, while the inhomogeneous

growth with random branching, could mostly occupy the space and ultimately could reduce the growing

density.

4 Conclusion

In this paper, we have developed a comparative framework for the dendritic evolution in the the anal-

ogous polar (i.e. circular) electrode arrangement versus the planar version. Subsequently, we have

compared their tendency for branching in the various stages of the dendritic development via analytical

obtaining of the initial curvature-dependent electric field distribution. Consequently, we have adopted

the Coarse Grained modeling, which works based on the extended scales of time and space (∼ µs,

∼ nm) than the typical interatomic collisions (∼ fs, ∼ Å), where the reduction in the growth mea-

sure enhancement in the formed density in the cylindrical cell versus the planar cell is quantified. The

obtained characterization could be useful as a facile and versatile tool for dendrite-resilient electrode

design, particularly in high-power applications.

Data Availability

The row data for producing the results in this manuscript are freely available upon request from the
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