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Abstract

The growing dendrites during the charging of the battery can pierce into the polymer elec-
trolyte and short-circuit the cell. A dendritic microstructure is a branched medium, consisting of
numerous three-way intersections and when subjected to the piercing pressure the corresponding
forces propagate throughout the dendrite body. In this paper, we explore the effect of such force
propagation versus the geometry of a three-way intersection leading to the failure of a dendritic
branch and we have analyzed the dominant failure mechanism in the branch. Particularly we ad-
dress the mechanics of the intersection versus the respective inclinations of the branches and their
normalized length. Generalizing this method into larger clusters of dendritic trees helps to identify
the dominant failure mechanism and devise methods to prevent it.

Keywords: Dendritic Structure, Failure Mechanism, Force Propagation, Branch Geometry, Dimen-
sionless Analysis.

1 Introduction

The increasing demand on long-life portable electronics, renewable energy harvesting facilities, compu-
tationally powerful and portable computers, as well as the rapidly developing electric vehicles market
demands the instigation of energy storage devices with high capacity and efficiency [1, 2, 3]. The con-
ception and development of novel technologies in energy storage devices is falling short behind the
expeditious growth in energy consuming lifestyles [4, 5], but the recent advances in rechargeable battery
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(a) Magnesium dendrites [10].

Y branch

(b) Dendritic branching [?].

Figure 1: The grown dendritic structures: (a) experimental observation (b) branching sample in the
coarse grained model (Green: dendrite, red: free ions, blue: electric field, gray: iso-potential contours) .

technologies produced promising venues for reliable and clean sources for electrical energy and efficient
power management [6, 7]. Metallic anodes such as Na [8, 9], Mg [10, 11], Zn [12, 13], and most impor-
tantly Li [14, 15, 16, 17], which possesses the highest electropositivity and lowest mass density among
these metals, comprise suitable candidates for high energy applications.

The growth and stochastic branching of dendritic structures at the anode during charging occupy
large volumes and possess significant surface-to-volume ratios [15] which allows the unstable extension
for reaching the counter-electrode and short-circuit the cell [18, 19]. Additionally, the microstructures
could detach from the thinner branches throughout charge-discharge cycles, forming isolated crystals
which are thermally unstable and lead to capacity fade [20, 21, 22].

Various factors have previously been explored on the formation of the dendritic structures, including
temperature [23, 24, 25], directing internal structures [26, 27], utilizing smaller-scale pressure [28], charg-
ing method [29, 30, 31], role of particle size on local current density [32], role of solid electrolyte [33],
surface perturbations [34, 35], the chemical composition of the electrolyte [36, 37] and its concentration
[38] and mechanical strength of the electrode [39, 40]. The recent advanced characterization methods
include NMR [41] and MRI [42]. Needless to mention that the control of the solid electrolyte interphase
(SEI) which has recently attracted a lot of attention [43, 44].

The predictive modeling of the dendritic structures had initially concentrated on the role of either
the electric field [45] or the ionic diffusion [46, 47, 48, 49], whereas the recent studies have covered both
effects [50] in a significantly larger scale of the time and space, beyond the double layer region [51].
More recent frameworks include the phase field modeling [52, 53, 54] and use of Tafel kinetics [55].

The tendency of the ionic movement is either moving from higher-to-lower concentrated regions (i.e.
diffusion) or from higher-to-lower electric potential (i.e. electromigration). Regarding the dendritic
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(a) Parametrization of the three-way branch with labelling
the involved variables.
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Figure 2: The schematics of a three-way branching (a) Y intersection with parametrization (b) Forces
and deflections illustration in the left branch.

growth, the former is favorable and the latter is unfavorable, therefore the formation of the dendritic
interface is the result of the competition between the two effects.

While the research on dendrites has been difficult due to their amorphous nature and stochastic
evolution, the design/selection criterion requires the mechanical compatibility of the evolving dendrites
from electrode and the polymer electrolyte. Hence, there is an extensive need for computing the internal
forces in the dendritic microstructures for designing the suppression electrolytic separators. This de-
mands computing the mechanics of dendrites for anticipating the onset of piercing into the electrolytic
membrane. In this regard, although the branched microstructures extend to continuum scale ∼ µm,
they pertain high porosity. Hence, there is not a known experimental investigation of the individual
branches and the contemporary images solely visualize their holistic morphology [56, 10, ?].

In this paper, we develop a multi-mechanism failure criteria for a single three-way dendritic branch,
under the compressive load. We analyze the role of the geometrical parameters such as branch orien-
tation, span, and slender-ness ratio as well as the force transmission coefficient and we explain their
relationship with the earliest failure mechanism using both analytical expressions and numerical simula-
tions. The obtained characteristic charts could be useful for addressing the mechanical resilience versus
the structural complexity, in addition to material per se.

2 Methodology

The dendritic branches in the rechargeable batteries typically grow stochastically, leading to dis-organized
trees (Figure 1a) where the material used and operational parameters determine their ultimate mor-
phology.

A single three-way dendritic intersection is represented in the Figure 2a, and the variables are the
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shown branch angles {α1, α2, α3}. Since the centered x − y coordinate system has an identical vertical
distance l from the top/bottom ends, we have:

l1 · cos α1 = l2 · cos α2 = l3 cos α3 = l (1)

where the branch lengths {l1, l2, l3} will follow as variables. Additionally the imposed force F gets
divided to the individual forces F1 and F2:

F1 + F2 = F (2)

There are different modes of deflection, based on the magnitude, direction and location of the applied
force. Herein, we consider the vertical force F , leading to the identical vertical deflection δ1 = δ2 in
both branches. The decompositions of force and displacements are shown in the Figure 2b for the
first branch. Hence for the given top branch i, the transmitted forces Fi with the inclination angle αi

causes respective compressive deflection δi,c due to compression component Fi,c = Fi cos αi along axial
directions as well as the bending deflection δi,b due to bending component Fi,b = Fi sin αi perpendicular
to the branch i, that can be obtained as [57]:


δi,c = Fili

AE
cos αi

δi,b = Fil
3
i

3EI
sin αi

(3)

where Fi is the vertical force on either branch and li , A = π

4 d2, I = π

64d4 and E are the length,
cross sectional area, the second moment of inertia and the elastic modulus of the branch. Consequently,
from Figure 2b the total vertical displacement δ is obtained via superposition as:

δi = δi,c cos αi + δi,b sin αi (4)

Coupling Equations 4 and 3 relates the forces Fi in each branch to their respective total vertical
displacements δi. Hence, the equal deflection criterion (δ1 = δ2) leads to:

F1l1
AE

cos2 α1 + F1l
3
1

3EI
sin2 α1 = F2l2

AE
cos2 α2+

F2l
3
2

3EI
sin2 α2 (5)

Solving the coupled equation of 2 and 5 leads to the individual branch forces Fi = fiF , where the
fraction fi is the force transmission coefficient for the respective branch i, simplified as:

fi = 1 − ηi∑
ηi

(6)

where the coefficient ηi is expressed as:

ηi = cos αi + 16
3π

l̂2
i sin αi tan αi (7)
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Figure 3: Variation of force transmission coefficient f1 versus the branch angle α1 for different values of
the other branch angle α2 = {15◦, 30◦, 45◦}. The blue zone illustrates the dominance of the branch 1
(F1 > F2), while the red zone shows the opposite (F1 < F2).

here l̂i:=
li
d

is the non-dimensionalized branch length. The force transmission coefficient fi is ex-
tensively explored versus the respective branch angle αi in the Figure 3 as well as the branch length
l̂1 = {1, 2, 3, 5, 10} (each figure) and the angles of the other branch α2 = {15◦, 30◦, 45◦}.

The failure of the three-way dendritic branch could be due to yielding (i.e. compression + bending)
or buckling. Region-wise, we categorize the failure as below:

2.1 Top Failure:

I. Yielding (Y ): The compressive stress σi in the branch i is the cooperative effect of bending (Fi,b)
and compression (Fi,c) forces, and it’s maximum occurs at the intersection end which has longest arm
for bending, as below:

σi = Fi,blic

I
+ Fi,c

A
(8)

where c = d

2 is the maximum distance from the neutral axis. Considering Equations 6 and 8 and to
prevent failure we require σi < σy, then the yielding force in the top branch F̂Top,Y in the dimension-less
form is obtained as:

F̂Top,Y <
1
fi

1
8l̂i sin αi + cos αi

(9)

where F̂ = F

Aσy

and l̂i = li
d

. Since the metal’s strength is similar in both tension and compression,

the interaction of the compressive force Fi,c and compressive/tensile moment Fi,bli in the arm i has been
only conservatively considered for their constructive effect (plus sign).
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Figure 4: Non-dimensional critical force F̂ for yielding failure versus the inclination angle α1 and l̂ = 5.
The zones of the earliest failure are shaded (branch 1 (right) in blue, and branch 2 (left) in green and
branch 3 (bottom) in red).

II. Buckling (B): Additionally, for a top branch i in the Figure 2a with the free top (moving) and the

fixed bottom (intersection), the critical axial force Fic,B would be Fic,B = 1
4

π2EI

l2
i

[58] , and based on the

parameters of the Figure 2a ( li = l

cos αi

, Fi = fiF cos αi) the critical load F̂Top,B is obtained as:

F̂Top,B = cos αi

ϵyfi

(
π

8l̂i

)2

(10)

2.2 Bottom Failure:

I. Yielding (Y ): The compressive stress experienced in the bottom occurs is the result of the difference
of the top moments from the left/right branches as well as the transmitted compression. From the Figure
2a, the direction of α1, α2 and α3 are considered as CCW1, CW2 and CCW respectively. The applied
force F is decomposed to the axial F3,c and bending F3,b forces with moment M3, obtained as:

F3,c = F cos α3 , F3,b = F sin α3 , M3 = Fl∆ (11)

where, ∆ = f1 tan α1 − f2 tan α2 + (f1 − f2) tan α3, and the length is l3 = l

cos α3
. Hence on the applied

force should fall in the following range (α3 > 0), in dimension-less form:

F̂Bot,Y <
1

8l̂∆ + cos α3
(12)

1Counter clock-wise.
2Clock-wise.
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Figure 5: Non-dimensional critical force F̂ for yielding failure versus the inclination angle α1 and l̂ = 10.
The zones of the earliest failure are shaded (branch 1 (right) in blue, and branch 2 (left) in green and
branch 3 (bottom) in red).

II. Buckling (B):
Figure 7 illustrates the free body diagram for the branch 3 (bottom) as a function of the geometric
parameters. The moment equilibrium in the distance x yields:

EIy” + (F cos α3) y = − (F sin α3) x + M3

which could be solved in terms of the homogenous yh and particular yp solutions as:

y = A sin (λx) + B cos (λx) − (tan α3) x + M3

F cos α3
(13)

where λ =
√

F cos α3

EI
. Assuming the cantilever boundary condition in the bottom (y (0) = 0,

y′ (0) = 0) and the pinned condition in the top (y (l) = 0) one arrives as:

sin α3 (λl − sin (λl)) = M3

F
λ (1 − cos (λl)) (14)

which could be solved numerically for obtaining the critical force F . For a simpler case of vertically
standing bottom branch (α3 = 0), the analytical solution would be:

y = ∆l

1 − cos
√ F

EI
x


Which in order to yields y (l) = 0 one arrives at:

F3c,cr = 4π2EI

l2
3
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which, based on the given configuration it translates into:

F̂Bot,B = cos α3

ϵy

(
π

2l̂

)2
(15)

Additionally, in a typical dendritic branch the slenderness ratio l

κ
is considerable and hence, com-

pared to yielding due to bending and compression, the buckling is less likely to occur. Nonetheless for

the elastic buckling, the lowest slenderness ratio limit is found to be
(

l

κ

)
min

= π
√

ϵy

[59]. Hence the

geometric range for elastic buckling via considering circular cross-section and simplification will be:

l̂2 >
π2

16ϵy

(16)

Considering the typical yield strain of ≈ 0.2% for metals [60], one gets:

l̂ > 17.56

which will be verified for elastic buckling in the next section.
Figures 4 and 5 show the graphs of the critical failure zones caused by the force F̂ considering

all three branches of the three-way intersection for l̂1 = 5 and l̂1 = 10 respectively. The shaded areas
represent the mechanism of the earliest failure where the blue, red, and green regions signify the yielding
failure in the branches 1 , 2 (Top) and 3 (Bottom) respectively. In this regard, the failure is defined as
the minimum force causing of the aforementioned mechanisms, as below:

F̂Top = min
{
F̂Top,Y , F̂Top,B

}
, F̂Bot = min

{
F̂Bot,Y , F̂Bot,B

}
Mainly the branch with the smallest angle fails earlier (branch 1 for α1 < α2 and branch 2 vice

versa). However, the bottom part fails first for large-enough values of α1, where the moment difference
between the top branches becomes significant. As well, when α1 → 0, although both top and bottom
are dominantly in compression, the bottom parts bears more force since the top force still gets divided,
therefore the bottom failure becomes slightly dominant.

3 Symmetric case (α1 = α2 = α , l1 = l2 = l3)

In this case the angle with vertical axis is α, and the length of the branches is l̂ while geometric and
mechanical conditions are symmetric. Therefore, the Equation 9 reduces to:

F̂Top,Y <
2

8l̂ tan α + cos α
(17)

As well the bottom yielding force is simplified into F̂ = 1. The Figure 6 shows the critical failure
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Figure 6: The critical force F̂ in symmetric case (α1 = α2 = α, l̂1 = l̂2 = l̂3) versus the non dimensional
length l̂. The figures show regions of the earliest failure, either by yielding in the bottom (blue), yielding
in the top (green) buckling of the bottom branch (orange). The dashed line shows the limit of the
inelastic buckling.

zones for the symmetric case of α = {3◦, 5◦} against the branch length l̂. For a very small l̂, the failure
occurs in the bottom by yielding which is highlighted in blue. The next region for higher l̂, shows the
failure by yielding of the top branch (it is indifferent which branch fails due to symmetry). This region
is highlighted in green. Increasing further in l̂, the failure mechanism becomes buckling of the bottom
branch highlighted in orange. However, since the top force gets divided, it is unlikely that the structure
fails by buckling of the top branches (red curve). As well, the explored configurations in these graphs,
which is attained from the Equation 16 falls beyond the inelastic limit (dashed curve in the Figures 6a
and 6b) and hence the failure takes place within the elastic range.

4 Numerical Simulations

We have performed numerical simulations via ABAQUS on the intersection of three branches with the
concerned geometries. The simulation intersection was established via joining the beams of circular
cross-section and assigning the identical values in their translation and rotation values. The top two
branches were assigned free displacements in their top, while the the bottom branch was assigned
cantilever condition (i.e. no translation/rotation) in the bottom end. The meshing was performed via
default wire elements in two dimensions. Subsequently, the equal vertical displacements were imposed
to the top branches and the simulation was run for the statics case in one single step. Care was taken
so the maximum stress value does not exceed the yield strength of the assigned material (σ < σy). The
resulting figures for the assigned geometries are shown in the Figure 8, for analogy with the attained
analytical trend, which, are in agreement as illustrated in 3 configurations. Due to non-dimensional
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nature of the graphs, the trend is true for any given arbitrary material and the location of the maximum
stress will not change, as long as the entire medium remains in elastic (i.e. linear) zone.

5 Results & Discussions

In a broad view, the failure in each branch of the three-way intersection depends on the combination of
bending+compression (Y ), and bucking (B) stresses, which are separately functions of the inclination
angle αi, and consequently branch length li and the force transmission coefficients fi. From the Equation
3, one gets the following:

δi,c ∼ fili cos αi

δi,b ∼ fil
3
i sin αi

Comparing the parameters fi, li and αi, for vertical-enough branch the angle dependency αi is
the most dominant (δi,c > δi,b). However for large-enough values of branch orientation αi, the length
dependency li becomes higher and the bending deflection takes over (δi,b > δi.c).

From the Figure 3 it is obvious that the most vertical branch always takes the highest portion of the
applied force F (fi ↑∼ αi ↓). As well, the transition of the branch with the higher force fraction occurs
when the geometry approaches the symmetric case (α1 → α2) leading to f1 ≈ f2 → 0.5. Therefore
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increasing the angle for the second branch α2 makes the transition point of the branch with dominant
force move to higher values. As well due to transition of the dominancy, the rate of the force exchange
∂f1/∂α1 is mostly highest in the proximity of symmetricity. Finally, this rate ∂f1/∂α1 is larger for the
longer branch length l since the bending deflection has the highest sensitivity to the branch length.

Before the transition (i.e. α1 < α2) the branch l2 is larger, and thus the dominant modes of deflection
is compression δc for left branch and bending δb for the right branch. From the Equation 3 obviously
δb ∝ l3 and δc ∝ l. Thus, increasing α1 causes bending deflection δb to increase more significantly both in
terms of angle α1 and length l1. After the transition point (α1 > α2) the dominant modes of deflections
are exchanged. While the left branch bears larger bending deflection δb and becomes susceptible to
failure as α1 grows, the right branch will encounter the larger force fraction f2. To summarize:

αi ↑ ∼ fi ↓ ∼ li ↑

and therefore the trends of compressive δi,c and bending δi,b deflections are the result of their cumu-
lative effect.

Comparing the the trend for the top branches 1 and 2 in the Figure 3 with the Figures 4 and 5
one notices the correlation between force fraction fi and the respective failure region, where the branch
of the largest force fraction fi fails the earliest. Additionally, the sensitivity to the branch length l̂ is
obvious by contraction of the failures zones in the 5 (l̂1 = 10) with respect to the Figure 4 (l̂1 = 5).
As well, the the contribution of buckling forces in failure is absent in these figures and becomes more
pronounced for larger branch length values (i.e. FB,i ∝ l−2

i ). Nonetheless, the order of the yielding
for all explored configurations versus the branch orientation α1 is bottom yielding (branch 3), top left
yielding (branch 1) and top right yielding (branch 2).

Analyzing the symmetric case is relatively simpler in the Figure 6, where the bottom branch becomes
only critical for small values of α1 ≈ α2 which leads to smaller values branch lengths l̂1 ≈ l̂2, particularly
due to neutralizing of the imposed moments from the top branches (i.e.

∣∣∣f1l̂1sinα1 − f2l̂2sinα2

∣∣∣ ≈ 0).
However, the larger values of l̂i and angle αi triggers the bending failure for the top branches. (i.e.
F̂Top1,2,Y < F̂Bot,Y ≈ 1). This can be shown from Equation 17 where the yielding limit shrink linearly
with extra length l̂. On the other hand, this function is dynamically variant versus α, and to find the
minimum value from the Equation 9 we find α for which:

∂F̂Top,Y

∂α
=

2
(
sin α cos2 α − 8l̂

)
(
8l̂ sin α + cos2 α

)2 < 0

which is due to larger typical value l̂. Thus, the maximum force F̂Top,Y will reduce versus the angle
α monotonously, which is mainly due to bending effect becoming more critical (l̂ ↑).

Additional increasing branch length makes the buckling threshold in the bottom branch to shrink
with higher rate that eventually surpasses the yielding limit in the top branches. Comparing the two
terms in the Equations 15 and 9, such length limit is found as:
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l̂Y →B = π2

2εy

(
tan α +

√
tan2 α + εy

2π2 cos α
)

which shows the direct correlation between the transition length l̂Y →B and the branch angle α. In
fact, the smaller branch inclination α, the transition from yielding Y to the bucking B occurs earlier
and in the limit one gets:

l̂min
Y →B = π

2√2εy

≈ 24.8 (18)

which is obtained via the assumption of ϵy = 0.2% and resonates very well with the transient regime
in the Figures 6a and 6b. As well, Equation 18 shows that for ductile materials that have higher
yield strain εy causes the material endure larger deflection in bending. Thus the buckling becomes more
controlling for the failure and the transition length l̂Y →B from bending failure to buckling failure becomes
smaller. Vice versa brittle materials with smaller εy are highly sensitive to bending and therefore the
failure is controlled more by yielding (compression + bending) failure than the buckling failure. As well,
the possibility of buckling is highly sensitivity to the angle α and occurs when the length is considerably
high (l ↑) or the corresponding angle is very small (α ↓). Therefore, for large enough inclinations,
yielding becomes a sole failure mechanism.

It is obvious that the bottom buckling always occurs earlier than the top, since the force in the top
branch is the result of decomposition of the imposed force to the fraction of fi and to the axial direction
by means of the the projection Therefore, in the symmetric case 1

2 cos α < 1, fi = 1
2 and:

F1 = F2 < F3

and hence the buckling in the Figures 6 is always controlled by the bottom branch. Furthermore one
could explore the possibility of the moment amplification in the deflected branch, where the imposed
and generated moments reduce the threshold for the critical load. For symmetric case, one could set
α3 = 0 and the Equation 13 is reduced to:

y = M3

F

1 − cos
√ F

EI
x


The most critical position xc for the moment amplification could be found by setting y′ (x) = 0, hence

getting xc = π

√
EI

F
, the magnitude of maximum deflection ymax would be obtained as ymax = 2M3

F
.

From the Equation 11, on the verge of yielding, one has:

F

A
+ F.ymax.c

I
+ M3c

I
= σy

which gets simplified to:
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F̂ = 1
1 + 24∆l̂

(19)

Comparing with the Equation 12, this is a stricter criterion for the failure. In fact the moment
amplification triples the effect of the transmitted moment M3 to the branch 3, and hence could be
controlling when the magnitudes of the transmitted moment M3 and the branch length l̂ are sufficiently
large. However, for the symmetric case, ∆ → 0 and hence F̂ → 1, which will not be deterministic
mechanism for the the trends of the Figures 6a and 6b.

Finally, we should mention that this study is simplistic approach to the failure of a single three-way
junction in the local level and additional rotation/translation from the global frame of reference could be
deterministic for the failure mode as well as the the criticality of a branch. Hence, further cluster-based
generic work is underway in order to include role the entire structure as well as the magnitude/orientation
of the propagated force, ending up in the concerned junction, which could be added to the framework
by means of superposition in throughout the elastic behavior. In fact, the combination of the failure
modes during the plastic behavior would be conditional and non-linear which pertains higher level of
complexity and further work is underway for addressing their association during the plastic behavior.

Needless to mention that in the presence of defects, the branches could undergo fracture in the lower
regime of the loading. However, since the dendritic branches are usually in sub-grain (∼ µm) scale, the
possibility of formation of imperfections is lower than the larger scales. The scarcity of defects in smaller
scale has been attributed as the underlying reason for the higher strength in the lower scales [61, 62].

Additionally, in this study we have considered the piercing force as a major stress source on the three-
way dendritic branch. During the initial growth of the dendrites, there are other minor stress sources,
such as the surrounding organic compounds and hydrostatic pressure where the net effect could perhaps
become tangible in large-enough scales. There are additional the side physical effects, such as presumably
the moments in the junction and the interaction of the three-way dendritic branch via external contact
with the neighbor branch(es), which is not included. Not to mention that the surrounding fluid (i.e.
electrolyte) will have a balanced-out the pressure distribution from the periphery (Pascal’s law), which
ultimately have neutral net effect.

However, the major part of dendritic growth occurs in the space between the components which is
the gap between the electrode and electrolyte. Hence, the external effects are minimized. Nevertheless
these factor still remains minimal compared to the piercing forces.

6 Conclusion

In this paper, we developed a geometric framework for the failure of a three-way intersection as the
most critical part of a microstructure where the role of the branch length and the corresponding branch
orientation with the respective force fraction is analyzed extensively. The failure mechanism due to
vertical loading has been explored in terms of three distinct mechanisms of bending, compression and
buckling and zones of earliest failure were respectively identified and visualized. In particular, the
symmetric junction case was explored further where the buckling effect was investigated by extending
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the branches length beyond the typical limits. The failure analysis was performed in dimensionless form,
making the characterization scale-free.

The deflection based analysis showed that the force is transmitted dominantly into the least inclined
branch, and the force transmission coefficient declines as the inclination angle increases. As well, the
transition point of controlling force between the top branches occurs at symmetric configuration.

The governing failure mechanism for the three-way junction is yielding due to bending for the largest
sensible range of parameters, and buckling becomes relevant for failure only in exceptionally large branch
lengths and small inclination angles. In this regard, the moment amplification during the buckling has
shown to have significant effect, which could be controlling factor in non-symmetric cases.

The failure analysis in this study is constructive for assessing the mechanical properties of a large-
scale dendrite where the realization between the structural configuration and failure mechanism and the
respecrice limit allows computing the transmitted force from microstructure to a neighboring polymer
electrolyte or other mechanical barriers.
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List of Symbols

E : Elastic modulus (pa)
li : Length of branch i (m)
l̂i : Normalized length of branch i
d : Diameter of branch (m)
αi : Inclination angle between the vertical axis
and branch i (rad)
F : Total force applied (N)
Fi: the total force on the branch i
Fi,c: Force due to compression in branch i (N)
Fi,b: Force due to bending in branch i (N)
FT op,Y : Yielding force in the top branch (N)
ηi: coefficient for calculating fi

M12 : Moment transmitted to the branch 3
(top) (N.m)
M3 : Moment reaction from the branch 3 (bot-
tom) (N.m)
∆: Coefficient of moment reaction from the
branch 3 ([ ])

FBot,Y : Yielding force in the bottom branch(N)
FT op,B: Buckling force in top branch (N)
FBot,B: Buckling force in bottom branch (N)
F̂ : Normalized force applied
I : Areal moment of inertia (m4)
δi: Total deflection in branch i (m)
δi,c: deflection due to compression in branch i
(m)
δi,b: deflection due to bending in branch i (m)
A: cross-section (m2)
σy : Yield stress (pa)
ϵy: Yield strain ([ ])
x: Distance coordinate for branch 3 (m)
y: Deflection coordinate for branch 3 (m)
xc: location of maximum deflection (m)
ymax: the magnitude of the maximum deflec-
tion (m)
κ: The radius of gyration (m)
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