Morphometry of Dendritic Materials in Rechargeable Batteries

Asghar Aryanfar *†‡, Sajed Medlej †, William A. Goddard III §

† American University of Beirut, Riad El-Solh, Lebanon 1107 2020
‡ Bahçeşehir University, 4 Çırağan Cad, Beşiktaş, Istanbul, Turkey 34353
§ California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125

Abstract

The formation of highly-branched dendrites during the charging period of the rechargeable batteries is a critical safety drawback, causing capacity decay in particular during utilization of high energy-density metallic elements as electrode. We develop a comparative framework for predicting the branching tendency of the conventional metallic candidates (Li, Na, Mg & Zn) in connection with their inherent material properties as well as representative spatial variants. Our framework covers the kinetic aspect of the electrodeposition, where the brownian motion leads to the formation randomly-branched microstructures. The ionic species are reduced in the proximity of the dendrite body and turn into the atom with the success probability derived from the electron transfer principles. Our development has been carried out in the atomic scale ($\sim \text{Å}$) and the time interval of inter-ionic collisions ($\sim ps$) and the determining sub-factors leading to branched evolution are analyzed separately. The results provide intuitive understanding for the effective utilization of the electrode materials in rechargeable batteries based on the given specific application, such as magnitude of the charge carriers, the applied current density or the thickness of the formed microstructures.

Keywords: Dendritic evolution, electrodeposition, electrode materials, reaction probability.

1 Introduction

The modern era of wireless revolution and portable electronics demands the utilization of reliable intermittent renewables and long-lasting electrical energy storage facilities [4, 5]. As well, the growing demand for portable computational power as well as the introduction of electric vehicles demand novel and reliable high capacity energy storage devices. Despite such impressive growth of the need in the daily

*Corresponding author; email: aryanfar@caltech.edu
lifestyle, the underlying science remains to be developed. Rechargeable batteries, which retrieve/store energy from/within the chemical bonds, have proven to be the most reliable and cleanest resource of electrical energy for the efficient management of the power. [6, 7] Metallic anodes such as lithium Li [8], sodium Na [9], magnesium Mg [2], and zinc Zn [10] are arguably highly attractive candidates for use in high-energy and high-power density rechargeable batteries. Lithium Li possess the lowest mass density ($\rho_{Li} = 0.53 \text{ g.cm}^{-3}$) and the highest electropositivity ($E^{0} = -3.04V \text{ vs SHE}^1$) which provides the highest gravimetric energy density and likely the highest voltage output, making it suitable for high-power applications such as electric vehicles [11, 12, 13]. Sodium has a lower cost and is more earth abundant and is operational for large-scale stationary energy storage applications [14]. Magnesium Mg possess a high specific capacity and reactivity [15] whereas Zinc Zn is earth-abundant, has low cost and high storage capacity [16].

During the charging, the fast-pace formation of microstructures with relatively low surface energy from Brownian dynamics, leads to the branched evolution with high surface to volume ratio [12]. The quickening tree-like morphologies could occupy a large volume, possibly reach the counter-electrode and short the cell. Additionally, they can also dissolve from their thinner necks during subsequent discharge period and form detached dead crystals, leading to thermal instability and capacity decay [17, 18]. Such a formation-dissolution cycle is particularly prominent for the metal electrodes due to lack of intercalation [19], where the depositions in the surface is the only dominant formation mechanism versus the diffusion into the inner layers as the housing [20]. The growing amorphous crystals can pierce into the polymer electrolyte and short the cell afterwards, given their higher porosity, they could have mechanical properties comparable to the bulk form [21].

Previous studies have investigated various factors on dendritic formation such as current density [22], electrode surface roughness [23, 24], impurities [25], solvent and electrolyte chemical composition [26, 27], electrolyte concentration [28], utilization of powder electrodes [29] and adhesive polymers[30], temperature [31, 32], guiding scaffolds [33, 34], capillary pressure [35], cathode morphology [36] and mechanics [37, 38, 39, 40]. Some of conventional characterization techniques used include NMR [41] and

1SHE: Standard Hydrogen Electrode, taken conventionally as the reference ($E^{0}_{\text{H}_2} = 0$)
MRI. [42] Recent studies also have shown the necessity of stability of solid electrolyte interphase (i.e. SEI) layer for controlling the nucleation and growth of the branched medium [43, 44] as well as pulse charging [45, 46, 47].

Earlier model of dendrites had focused on the electric field and space charge as the main responsible mechanism [48] while the later models focused on ionic concentration causing the diffusion limited aggregation (DLA). [49, 50, 51, 52] Both mechanisms are part of the electrochemical potential [53, 54], indicating that each could be dominant depending on the localizations of the electric potential or ionic concentration within the medium. Recent studies have explored both factors and their interplay, particularly in continuum scale and coarser time intervals, matching the scale of the experimental time and space [55]. Other simplified frameworks include phase field modeling [56, 57, 58] and analytical developments [59].

During charge period the ions accumulate at the dendrites tips (unfavorable) due to high electric field in convex geometry and at the same time tend to diffuse away to other less concentrated regions due to diffusion (favorable). Such dynamics typically occurs within the double layer (or stern layer [60]) which is relatively small and comparable to the Debye length. In high charge rates, the ionic concentration is depleted on the reaction sites and could tend to zero [52]; Nonetheless, our continuum-level study extends to larger scale, beyond the double layer region [61].

In this paper, we elaborate further on the tendency of the electrode materials for the formation and growth of dendritic (sub)branches. The candidate elements have already been utilized in primarily\(^2\) batteries with potential applications in rechargeable alternatives. Our atomistic-scale (\(\sim \text{Å}\)) approach quantifies the role of the location of ions as spatial variables (Figure 2a) and their connection to the

\(^2\)i.e. non-rechargeable.
material properties on the kinetics of the ionic transport and electrodeposition (Figure 2b) which leads to the probability of the reaction and hence determines the ultimate form of the metastable dendrites.

2 Methodology

Table 1 shows the atomic scale properties of the electrode materials and Figure 1 physically represents the ultimate 3 representative morphologies [1, 2, 3]. The instigation of the dendrites is rooted in the non-uniformity of electrode surface morphology at the atomic scale combined with Brownian ionic dynamics during electrodeposition. Any asperity in the surface provides a sharp electric field that attracts the upcoming ions as a deposition sink. As well the closeness of a convex surface to the counter electrode, as the source of ionic release, would make such peaks more favorable sites, leading to further quickening growth of dendrites in any scale. Such a fast-pace formation leads to the evolution of highly branched medium with a high surface to volume ratio and porosity as high as $\approx 97\%$ [65].

The approaching ion M^{n+} to the dendrite body, is successfully deposited to metallic state M^0 with the probability of p according to the reaction 1:

$$M^{n+} + ne^- \rightarrow M^0$$

where $M \in \{Li, Na, Mg, Zn\}$ and $n \in \{1, 2\}$. Respectively, such ion will move on and maintain original form with the probability of $1 - p$. Such probability p directly impacts the rate of electron transfer k_{ET} as [66]:

$$p = 1 - \exp (-k_{ET} \delta t)$$

where δt is the time interval given for the electron transfer. In fact the reaction probability of p controls the rate of the electron transfer k_{ET} in a given try:

$$0 \leq p < 1 \iff 0 \leq k_{ET} < \infty$$

Thus the higher values of p causes the initial approaches in the outer boundary of the dendrites more successful creating more branches and vice versa smaller probability p provides more likeliness for the

<table>
<thead>
<tr>
<th>Material</th>
<th>$a_M(A^0)$</th>
<th>$a_{M^{n+}}(A^n)$</th>
<th>$\phi(eV)$</th>
<th>Ref.</th>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>1.45</td>
<td>0.9</td>
<td>2.9</td>
<td>[62]</td>
<td>Ethylene</td>
</tr>
<tr>
<td>Na</td>
<td>1.8</td>
<td>1.16</td>
<td>2.4</td>
<td>[63]</td>
<td>Carbonate</td>
</tr>
<tr>
<td>Mg</td>
<td>1.5</td>
<td>0.86</td>
<td>3.7</td>
<td>[64]</td>
<td>(EC)</td>
</tr>
<tr>
<td>Zn</td>
<td>1.35</td>
<td>0.88</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Atomistic properties of the electrode materials.

3 Although the current study is for the amorphous dendritic crystals in mesoscale understanding, the atomic radius has been taken from the natural and ordered crystalline phase: $a = 2r_{bond}$.

upcoming ions to safely pass the boundary and diffuse into the inner layers, which makes the deposition more compact (i.e. less dendritic).

The rate of electron transfer \(k_{ET} \) in the reaction 2 is expressed from Marcus theory as [53, 67]:

\[
k_{ET} = K_M \nu_n \kappa_{el} \exp \left(\frac{-\Delta G}{k_BT} \right)
\]

(4)

where \(K_m \) is the equilibrium constant, \(\nu_n \) is the nuclear frequency factor, \(\kappa_{el} \) is the electron transmission coefficient and \(\Delta G \) is the activation energy (i.e. energy barrier) for the reaction. We address these parameters extensively as below:

2.1 Activation Energy (\(\Delta G \))

From Equation 4 the electron transfer rate \(k_{ET} \) has the highest sensitivity to the energy barrier \(\Delta G \) for the reduction of the ion into the sea of provided electrons within the already-deposited atoms. The energy barrier \(\Delta G \) has two distinct compartments as [66]:

\[
\Delta G = \Delta G_{out} + \Delta G_{in}
\]

(5)

where \(\Delta G_{is} \) and \(\Delta G_{os} \) are the corresponding activation energy for the inner and outer shell electron transfer respectively.

The inner shell activation energy is obtained by assuming the bond as a spring that stretched from ionic to atomic bond length. Such change \(\Delta a \) during transition from ionic \(a_M \) and metallic \(a_{M^{n+}} \) states would be:

\[
\Delta a = a_M - a_{M^{n+}}
\]

(6)

Therefore the stored inner-shell energy \(\Delta G_{is} \) in general is the sum for all the bonds formed [72] as:

\[
\Delta G_{is} = \frac{1}{2} \sum_{i=1}^{n} f_i \left(\frac{\Delta a}{2} \right)^2
\]

(7)

where \(f_i \) is the normal mode force constant, \(n \) is the number of formed bonds. The force constant \(f_i \) can be obtained from the Leonard Jones potential \(V_{LJ} \) relationship given as [73]:

Table 2: General values.

<table>
<thead>
<tr>
<th>Var.</th>
<th>Li</th>
<th>Na</th>
<th>Mg</th>
<th>Zn</th>
<th>Ref.</th>
<th>Var.</th>
<th>Value</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon (\text{meV}))</td>
<td>7.1</td>
<td>5.6</td>
<td>0.98</td>
<td>5.4</td>
<td>[68, 69]</td>
<td>(\varepsilon_s)</td>
<td>95.3</td>
<td>[70]</td>
</tr>
<tr>
<td>(\Delta a (\text{Å}^n))</td>
<td>1.1</td>
<td>1.28</td>
<td>1.28</td>
<td>0.94</td>
<td>Eq. 6</td>
<td>(\varepsilon_{opt})</td>
<td>1.84</td>
<td>[71]</td>
</tr>
<tr>
<td>(f(\text{eV.Å}^{-2}))</td>
<td>0.24</td>
<td>0.13</td>
<td>0.03</td>
<td>0.20</td>
<td>Eq. 8</td>
<td>(\nu_{is} (\text{Hz}))</td>
<td>10^{13}</td>
<td>[72]</td>
</tr>
<tr>
<td>(\Delta G_{is} (\text{meV}))</td>
<td>36.8</td>
<td>26.6</td>
<td>12.3</td>
<td>44.2</td>
<td>Eq. 7</td>
<td>(\tau_L (\text{ps}))</td>
<td>0.21</td>
<td>Eq. 13</td>
</tr>
</tbody>
</table>
where \(\varepsilon \) is the depth of potential well in the energy-distance diagram, \(a \) is the minimum-potential distance (a.k.a bond length), and \(r \) is the distance variable. The force constant \(f \) can be obtained from the second derivative of the potential distribution around the equilibrium distance \((r \approx a)\) as:

\[
f = \frac{\partial^2 V_{LJ}}{\partial r^2}
\]

\[
\bigg|_{r=a} = \frac{\partial}{\partial r} \left(\varepsilon \left(-\frac{12a^{12}}{r^{13}} + \frac{12a^6}{r^7} \right) \right) \bigg|_{r=a}
\]

\[
= 12\varepsilon \left(\frac{13a^{12}}{r^{14}} - \frac{7a^6}{r^8} \right) \bigg|_{r=a} = \frac{72\varepsilon}{a^2}
\]

and the material-dependent parameters are calculated in the Table 2. The outer shell the activation energy \(\Delta G_{os} \) is expressed as \cite{72, 74}:

\[
\Delta G_{os} = \frac{n^2 e^2}{8} \left(\frac{1}{a} - \frac{1}{R_e} \right) \left(\frac{1}{\varepsilon_{opt}} - \frac{1}{\varepsilon_s} \right)
\]

where \(e \) is electron charge, \(n \) is valence electrons, \(a \) is the atomic radius, \(R_e \) is the distance of the reaction from the electrode surface and \(\varepsilon_{opt} \) and \(\varepsilon_s \) are optical and static permittivity of the solvent. Figure 3a visualizes the relation of the outer-shell energy barrier \(\Delta G_{os} \) to the distance from the electrode \(R_e \).

4Equivalent to the energy stored in a spring, stretched infinitesimally to the distance of \(\delta \), where: \(U = \frac{1}{2} k \delta^2 \), hence the stiffness \(k \) is obtained as \(\frac{\partial^2 U}{\partial \delta^2} = k \).
Table 3: Sample computation parameters.

<table>
<thead>
<tr>
<th>Var.</th>
<th>Li</th>
<th>Na</th>
<th>Mg</th>
<th>Zn</th>
<th>Ref.</th>
<th>Var.</th>
<th>Value</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_m</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td>Eq. 10</td>
<td>$R_e(Å)$</td>
<td>5</td>
<td>Fig. 2a</td>
</tr>
<tr>
<td>$r(Å)$</td>
<td>2.9</td>
<td>3.6</td>
<td>3.0</td>
<td>2.7</td>
<td>Fig. 2a (~ 2a)</td>
<td>δt(ps)</td>
<td>0.01</td>
<td>77</td>
</tr>
<tr>
<td>$∆G_{os}(meV)$</td>
<td>32.6</td>
<td>23.7</td>
<td>124</td>
<td>144</td>
<td>Eq. 9</td>
<td>$D(m^2/s)$</td>
<td>1.4×10^{-14}</td>
<td>55</td>
</tr>
<tr>
<td>$∆G(meV)$</td>
<td>69.4</td>
<td>50.3</td>
<td>137</td>
<td>188</td>
<td>Eq. 5</td>
<td>#Li$^+$</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>$ν_n(THz)$</td>
<td>7.4</td>
<td>7.3</td>
<td>4.1</td>
<td>5.6</td>
<td>Eq. 11</td>
<td>#Li0</td>
<td>400</td>
<td>55</td>
</tr>
<tr>
<td>$κ_{el}(×10^{-3})$</td>
<td>80.0</td>
<td>57.7</td>
<td>52.3</td>
<td>57.1</td>
<td>Eq. 14</td>
<td>$∆t(μs)$</td>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td>$k_{ET}(GHz)$</td>
<td>19.7</td>
<td>29.8</td>
<td>0.527</td>
<td>0.105</td>
<td>Eq. 4</td>
<td>$l(nm)$</td>
<td>167</td>
<td>55</td>
</tr>
<tr>
<td>P</td>
<td>0.861</td>
<td>0.949</td>
<td>0.051</td>
<td>0.010</td>
<td>Eq. 2</td>
<td>$∆V(mV)$</td>
<td>85</td>
<td>55</td>
</tr>
</tbody>
</table>

2.2 Concentration ratio (K_m)

The equilibrium constant K_M represents the ratio of local-to-bulk concentration in the precursor state ($K_M := \frac{C_{\text{local}}}{C_∞}$). Therefore the range of this ratio is:

$$0 \leq K_M \leq 1$$ (10)

During steady-state depletion in the reaction site, such concentration distribution is computed for flat electrodes (i.e. linear distribution) [48, 49] as well as curved surfaces [61], reducing from the ambient electrolyte concentration $C_∞$ to 0 in redox sites.

2.3 Nuclear frequency factor ($ν_n$)

The nuclear frequency factor $ν_n$ represents the rates of attempts on the energy barrier $ΔG$ and correlates with the bond vibration and solvent motion. Assuming stagnant solvent in the steady state condition, we can obtain the nuclear frequency factor $ν_n$ via quadratic interpolation of activation energies in the inner $ΔG_{is}$ and outer $ΔG_{os}$ shells as [75]:

$$ν_n = \sqrt{\frac{ν^2_{is}ΔG_{is} + ν^2_{os}ΔG_{os}}{ΔG_{is} + ΔG_{os}}}$$ (11)

where $ν_{is}$ is the frequency value of attempts in the inner shell, given in Table 1. The frequency of tries on the outer shell $ν_{os}$ correlates additionally with the solvent as:

$$ν_{os} = τ_L^{-1} \sqrt{\frac{ΔG_{os}}{4πk_B T}}$$ (12)

where $τ_L$ is the period for the solvent relaxation, scaled from Debye relaxation time $τ_D$ as [76]:

$$τ_L = \frac{ε_∞}{ε_s} τ_D$$ (13)

where $ε_∞$ is the high frequency dielectric constant.
2.4 Electron transmission (κ_{el})

The electronic transmission coefficient represents the probability of electron tunneling as \([72]\):

\[
\kappa_{el} = \kappa_{el}^0 \exp \left(-\frac{4\pi\sqrt{2m_e\phi}}{\hbar}(r - a) \right)
\]

where κ_{el}^0 is the pre-factor, assumed to be unity for adiabatic processes, m_e and \hbar are the electron mass and plank constant, r is donor-acceptor separation distance, a is separation distance of closest approach (i.e. interatomic distance), and ϕ is the work function. The tunneling probability is visualized versus distance in the Figure 3b.

2.5 Sample Computation

We have utilized the Coarse-grained method in time and space for the simulation of the dendrite morphology \([55]\). In this context, the electrochemical flux is typically generated either due the gradients of concentration (∇C) or electric potential (∇V). The convection is negligible in atomic scale, since Rayleigh number Ra which is highly dependent to the scale (i.e. $Ra \propto l^3$) is very small for the thin layer of electrodeposition: $Ra < 1500$ \([78]\). In the ionic scale, the regions of higher concentration tend to collide and repel more and, given enough time, disperse to lower concentration zones. In the larger scale, such inter-collisions could be added-up and be represented by the diffusion length \([61]\). Such displacements during the coarse time interval Δt could reach to $\sim ms$ where the ionic inter-collision time is typically in the order of $\sim fs$ ($\Delta t = \sum_{i=1}^{n} \delta t_i$). Therefore, the movement of each ionic specie $\delta \vec{r}$ would be:

\[
\delta \vec{r} = \sqrt{2D^+\Delta t} \hat{g} + \mu^+\vec{E}\Delta t
\]

Figure 4: The transport elements in the coarse scale of time and space. green: dendrite atoms, red: free ions, blue: electric field, black: iso-potential contours.
Figure 5: Obtained morphologies of the electrode materials.

where D^+ is the ionic diffusion coefficient in the electrolyte, $\hat{\mathbf{g}}$ is a normalized vector in random direction, representing the Brownian dynamics and μ^+ is the mobility of cations in electrolyte, obtained from Einstein relation ($\mu = \frac{D}{k_B T}$), and the local electric field \vec{E} is the gradient of electric potential ($\vec{E} = -\nabla V$). The diffusion length represents the average progress of a diffusive wave in a given time Δt, obtained directly from the continuum-scale description of diffusion [79]. The large-scale movements in the Equation 15 is schematically illustrated in the Figure 4, where the infinitesimal displacements are summed into the coarse grained vector.

Using the material-dependent parameters, given and obtained in Tables 1 and 2 and assuming typical and trivial values for spatial parameters of concentration ratio K_m, the donor-acceptor distance r and the distance from the electrode R_e one can reach to the rate of the electron transfer k_{ET} and the corresponding probability of the reaction p, which have been provided in the Table 3. Combining the evolution dynamics (Eq. 15) with the description probability of the electron transfer (Eq. 2) the stochastically grown morphology of the dendritic trees are computed and illustrated in the Figure 5. As well, we define a density measure ρ, which shows the fraction of filled space in the dendrite zone as:

$$\rho = \frac{N \pi a^2}{4h_{max} l}$$

where N is number of atoms in the dendrite body, h_{max} is the maximum reach of the dendrite atoms from the electrode and l is the domain scale. The higher values of the density ρ represent the more favorable and less branched microstructure.

3 Results & Discussion

The probability of successful jump p, which in a larger scale controls the rate of electron transfer k_{ET} is a critical factor in determining the ultimate morphology of the growing dendrites. The higher probability p causes more successful initial success rates upon reaching the dendrite and the branched morphology is developed from the outer regions (i.e. fingers), whereas the lower probability of jump p provides more
chance for the upcoming ionic species to infiltrate the inner layers of the microstructure and fill the voids, leading to more packed morphology. Therefore:

\[p \uparrow \sim \rho \downarrow \text{ (dendritic)} \]

We have described such probability of success \(p \) in terms of the inherent material properties as well as spatial variants as below:

3.1 Material Properties

The underlying attribute of the material, given separately in the Table 1 are described as below:

Work function (\(\phi \))

The work function \(\phi \) is the minimum thermodynamics work needed to remove an electron from the material to the outer vacuum space [80], and the following order holds between the electrode materials [64]:

\[\phi : Zn > Mg > Li > Na \] (16)

Such property reveals the tendency of the atom to keep the electron before giving away. Thus, the higher value of the work function \(\phi \) leads to lower probability of electron tunneling \(\kappa_{el} \) (Eq. 14, Fig. 3b), causing the lower probability of electron transfer \(p \). Such trend would make less dendritic microstructure, therefore:

\[\phi \uparrow \sim \kappa_{el} \downarrow \sim p \downarrow \text{ (packed)} \] (17)

Valence Electrons (\(n \))

The energy barrier needed for the reduction reaction 1 directly correlates with the valence electrons \(n \) based on the outer-shell activation energy (Eq. 9), which gives the advantage for the higher valence electron materials as ordered below:

\[n : Zn = Mg > Li = Na \] (18)

Higher valence electrons \(n \) quadratically increase the outer shell activation energy \(\Delta G_{os} \) (Eq. 9) which is illustrated in the Figure 3a. Therefore possibility of successful bonding \(p \) is reduced, leading to more packed morphology:

\[n \uparrow \sim \Delta G \uparrow \sim p \downarrow \text{ (packed)} \] (19)
Atomic radius \((a)\)

The size of atom - and the corresponding ion - are effective parameters for the reaction since the large atomic size can instigate higher possibility of overlap and electron transfer. The outer-shell energy barrier \(\Delta G_{os}\) (Eq. 9) in fact measures the potential energy difference between when the ionic \(M^{n+}\) and metallic \(M\) species reach in the atomic distance \(a\) versus a reference potential, determined by the distance from the electrode \(R_e\). Therefore the bond distance \(a\) directly impact the energy barrier and the materials are ordered as follows:

\[
a : \ Na > Mg > Li > Zn
\]

(20)

Notably, increasing the overlap possibility due to larger atomic size \(a\) leads to a branched evolution, whereas the smaller atoms could possibly escape more from the branches and infiltrate the inner sites. On the other hand the atomic size \(a\) directly correlates with the probability of the electron tunneling \(\kappa_{el}\) (Eq. 14). Hence:

\[
a \uparrow \sim \kappa_{el} \uparrow, \Delta G \downarrow \sim p \uparrow \text{ (Dendritic)}
\]

(21)

The other size-dependent parameter is the inner-shell activation energy \(\Delta G_{is}\) (Eq. 7) which is considered as a spring of stiffness \(f\) stretched between the ionic and atomic values \(\Delta a\) (Eq. 6) and due to symmetry the half value is in effect (i.e. \(\frac{\Delta a}{2}\)).

Figure 5 shows that sodium \(Na\) has the highest tendency for the formation of dendritic microstructures. The lower energy barrier of the sodium \(Na\) has previously provided identical insight [81], particularly in the context of surface-diffusion relative to lithium \(Li\) and magnesium \(Mg\) [82, 83].
Figure 7: Probability vs concentration ratio K_m: $r = 1.5a$ (dashed), $2a$ (solid), $R_e = 2a$

3.2 Spatial variants

The spatial variants in the Figure 2a and the flowchart 2b are location-dependent parameters shown as below:

Donor-acceptor distance (r)

While atoms and ions collide and repel due to Brownian dynamics, the real-time distance r between the donor and acceptor is a critical parameter which exponentially correlates with the success rate of the electron tunneling κ_{el} (Eq. 14). The electron from the donor is contained in the atom within the dendrite body shared as part of sea of electrons where the electron acceptor is the ionic specie approaching the dendrite body. Thus:

$$r \uparrow \sim \kappa_{el} \downarrow \sim p \downarrow \text{ (packed)} \quad (22)$$

The exponential behavior of the electron tunneling κ_{el} versus the donor-acceptor distance r (Fig. 3b) finally translates into the probability of successful reaction p shown in the Figure 6a. Experiment-wise an important factor controlling the dynamics of the donor-acceptor distance r can be the current density of the electrodeposition j (as well as the voltage V), where the higher current rate leads to closer distances r and consequently forms the dendritic trees [84, 85, 23]. Particularly, during the initiation of dendrites, the ordered lattice crystal structure on the base of deposition could be a source for determining such distance where higher lattice density can provide closer proximity to the upcoming ions. In this manner, the magnesium Mg provides larger distances than lithium Li and leading to a lower migration energy barrier for electron jump [86].

Location of the reaction (R_e)

The distance of the reaction from the electrode surface R_e, in fact determines the reference potential for the outer shell energy barrier ΔG_{os} and therefore the total activation energy ΔG (Eq. 5). In this
manner, the further locations from the electrode surface would require higher activation energy ΔG_{os} (Eq. 9) and therefore the probability of electron transfer decreases, leading to more favorable uniform evolution of morphology:

$$R_e \uparrow \sim \Delta G_{os} \uparrow \sim p \downarrow \text{ (packed)} \quad (23)$$

Therefore this factor is favorable for outer regions as illustrated in the Figure 6b and the sensitivity location of the reaction R_e is the highest in regions closer to the electrode (i.e. thin layer deposition).

Concentration Ratio K_m

As the reaction 1 occurs, the regions closer to the electrode surface deplete the ions and therefore the concentration is reduced, merely in the double layer region, where it could reach to zero in the limit of current density [48, 49, 61]. Therefore, starting from the electrode, the ionic concentration will have increasing trend toward ambient electrolyte. Typically the higher concentration leads to the higher rate of interactions and therefore the possibility of electron jump increases, leading to more dendritic morphology [87, 88, 89, 90]:

$$K_m \uparrow \sim p \uparrow \text{ (dendritic)} \quad (24)$$

The illustration of the increasing trend is shown in the Figure 7 for the materials considered. Likewise the concentration of the charge carriers correlates directly with the concentration the counter-ions as they both compose the solvent shell [91]. Although the branching factor is similar in all cases (~ 2)5 the branching propensity is higher in the locations further from the surface of the electrode.

Ultimately, the final morphology would depend on the combinatorics effects of the inherent material as well as spatial properties and each individual factor becomes effective in a given circumstance based on the application. We provide the experimental equivalence to the spatial variants analyzed in Table 4:

<table>
<thead>
<tr>
<th>Variant</th>
<th>r</th>
<th>R_e</th>
<th>K_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab-scale Equivalent</td>
<td>Applied current I, Voltage V</td>
<td>Utilized charge Q</td>
<td>Concentration C</td>
</tr>
</tbody>
</table>

Table 4: Experimental equivalent for the analyzed variants.

5Branching factor is the number of successors generated by a given branch.
the spatial (i.e. geometric) variants have been analyzed and correlated with the branching tendency. Our framework can be utilized for the selection process of the electrode materials in the given specific application where the prominent factor is either the utilized charge, the applied current density, or the thickness of the electro-deposited films.

List of Symbols

- $a_M, a_{M^{n+}}$: Atomic and ionic radii (Å)
- ϕ: Work function (V)
- p: Probability of electron transfer
- k_{ET}: Rate of electron transfer (s^{-1})
- K_m: Local-to-bulk concentration ratio
- ν_n: Nuclear frequency factor (s^{-1})
- ν_is: Inner-shell frequency (s^{-1})
- ν_os: Outer-shell frequency (s^{-1})
- κ_{el}: Probability of electron tunneling
- ΔG: Total activation energy (eV)
- ΔG_{is}: Inner-shell energy barrier (eV)
- ΔG_{os}: Outer-shell energy barrier (eV)
- k_B: Boltzmann constant ($1.38 \times 10^{-23} m^2.kg.s^{-2}.K^{-1}$)
- T: Temperature (298K)
- D: Diffusion coefficient (m^2/s)
- C_∞: Ambient electrolyte concentration (M)
- e: Electron charge (1eV)
- τ_L: Period of solvent relaxation (s)
- τ_D: Debye relaxation time (s)
- ε_{op}: Optical permittivity of solvent
- ε_s: Static permittivity of solvent
- j: Current density ($mA.cm^{-2}$)
- n: Valence electrons
- r: Donor-acceptor distance (Å)
- R_e: Distance of the reaction from the electrode (Å)
- m_e: Electron mass ($9.1 \times 10^{-31} kg$)
- N: Number of deposited atoms
- δt: Inter-ionic collision time (s)
- Δt: Coarse-scale inter-ionic collision time (s)
- h_{max}: Maximum reach of the dendrite from the electrode (Å)
- ρ: The density of the dendrite
- l: Domain length (Å)
- \hbar: Planck’s constant ($4.1 \times 10^{-15} eV.s^{-1}$)
- ε_0: Vacuum permittivity ($e^2eV^{-1}Å^{-1}$)

References

