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A B S T R A C T

We develop a new constriction-based percolation paradigm, using cellular automata to predict the transport of
oxygen through a stochastically-cracked Zr oxide layer within a real-time coupled diffusion-reaction framework.
We simulate such branching trees by generating a series of porosity-controlled media. Furthermore, we develop
an analytical criterion based on compressive yielding for bridging the transition state in corrosion regime, where
the percolation threshold has been achieved. Consequently, our model predicts the arrival rate of oxygen ions at
the oxide interface during the so-called post-transition regime, where the bulk diffusion is no longer the rate-
limiting factor.

1. Introduction

The corrosion and fracture of zirconium clad in the presence of
high-temperature water is the main failure mechanism in cooling pi-
pelines of pressurized water reactors (PWR) [1–4]. The gradual oxida-
tion is the result of diffusion of oxygen into the depth of metal matrix,
followed by chemical reaction in the corrosion front. Several studies
have shown that the oxide scale grows as cubic law versus time during
pre-transition period ( t

1
3 ) as opposed to typical parabolic diffusion

behavior ( t 1
2 ) [5–7]. While the contribution of chemistry and material

composition on the corrosion kinetics has been experimentally ad-
dressed in the past [8–11], the diffusion of oxygen into metallic struc-
ture leads to large augmentation in volume and forms internal com-
pressive stresses due to Pilling-Bedworth ratio [12,13].1 The fracture
reason is attributed to the residual stresses from cyclic cooling, em-
brittlement from hydrides precipitation and phase transformation
during non-stoichiometric oxidation of zirconium as well as yielding
due to compressive and the balancing tensile stresses [14,15,2].2 The
randomly-distributed cracks are merely sensitive to original spatial
distribution/concentration of defects/grain boundaries [16,17]. Con-
sequently water can penetrate into the cracks and the oxygen gets easy

access to corrosion sites without the original pre-cracking diffusion
barrier. This event leads to jump in corrosion kinetics [7]. The diffusion
process via grain boundaries and material matrix (i.e. lattice) has been
studied in the context of percolation [18]. One of the illustrative
methods for percolation is cellular automata paradigm which is typi-
cally studied in the two distinct context of site and bond percolation
[19–21]. Later studies have complemented the percolation with reac-
tion in the diffusion front [22]. However, the precise quantification of
diffusion through the shortest constriction pathways, particularly
during the oxidation process and wide range of percolation regime,
distinguished by fracture has not been addressed before. In this paper,
we develop a coupled diffusion-reaction framework, based on the two
percolation paradigms for predicting the corrosion rates after initiation
of cracks. The constriction and tortuous geometry of percolation path-
ways as well as the reactive term has central role in our model for
predicting the ultimate corrosion kinetics, particularly during the post-
transition (i.e. fracture) period, where the literature is scarce. Ad-
ditionally, our one dimensional modeling mainly resembles the uniform
corrosion in PWR case, whereas the localized nodular corrosion is more
common in other types of reactors (i.e. BWR) [17].

https://doi.org/10.1016/j.corsci.2019.06.013
Received 10 April 2019; Received in revised form 11 June 2019; Accepted 17 June 2019

⁎ Corresponding author at: Bahçeşehir University, 4 Çırağan Cad, Beşiktaş, Istanbul 34349, Turkey.
E-mail address: aryanfar@caltech.edu (A. Aryanfar).

1 = =R 1.56V
VPB

ox
Zr

ox
Zr

where V and ρ are the molar volume and ρ is mass density respectively.
2 From tetragonal to monoclinic and to the cubic phase.
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2. Methodology

2.1. Approach

The inhomogeneous percolation of the oxygen within the oxide
scale could either be interpreted as diffusion within the cracked net-
work during post-transition regime or within the grain boundaries or
material imperfections during the pre-transition development. In fact
such two patterns are highly correlated as the cracking is the most
feasible to occur through relatively weaker grain boundaries/im-
perfections. During the initial stage of oxidation, the abundant oxygen
from electrolyzed water reacts with the zirconium metal and therefore
the corrosion is in fact reaction-limited. However, after a sufficient pe-
netration of oxide scale into the depth, the reaction front suffers from
“breathing” and corrosion kinetics turns to be dominantly diffusion-
limited. Upon the fracture, the cracks propagate in columnar shape,
preferably along the weakest shear bands (i.e. grain boundaries) and
the water gets easy access to the oxidation front (i.e. oxide/metal in-
terface).

2.2. Percolation clusters

2.2.1. Characterization
Given a general network of cracks in Fig. 1, for the purpose of si-

mulation we can differentiate each one either via the connection to the
either of the interfaces, the constriction value with the inherent tortu-
osity as below:

0. Islands: These confined areas have no access to the any of the
interfaces. Therefore their role can be neglected.

1. Partial Cracks: These cracks need have partial progress within
the oxide layer from the water/oxide interface. The transport of water
occurs through the tortuous crack, while the rest of the diffusion within
the oxide occurs through the shortest path. (i.e. straight line.)

2. Full cracks: These cracks provide full connection between the
water/oxide and oxide/metal interfaces.

The tortuous geometry of each crack not only elongates the trans-
port route, but also provides a projection for the transport flux.
Therefore the diffusion coefficient for each crack Dcris expressed as:

= +
D D D

w

w

cr
2

cr

ox
2

ox

2

(1)

where D and τ are the diffusion coefficient and tortuosity of crack, oxide
and water respectively. Comparison the diffusivity values for oxide
scale Dox≈10−17m2/s [23] and water D 10w

8 m2/s [24] leads to:

< <D D D Dwox part full (2)

where Dpart and Dfull are the diffusion coefficient values for the partial
and full cracks.

The significant difference in Eq. (2) addresses that there is a jump in
the oxide growth rate when the porosity of crack network reaches the
percolation threshold value p= pc. Consequently, the homogenized
diffusivity DEFF during post-transition period can be simplified in 2D as:

=
D D
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EFF
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We simulate such medium by generating stochastic binary medium
with the developing porosity in time. Utilizing the cellular automaton
paradigm, we extend Dijkstra’ s shortest path algorithm [25], for ex-
tracting the Constriction rivers (CRs). The diffusion through cracks has
been simulated by the square bond percolation (42), accompanied with
the site percolation method for comparison and verification. The per-
colation threshold probability pc, which divides the pre and post-tran-
sition growth regimes, for the former is known to be ≈0.5 while in the
latter is ≈0.5928, after which some of the partially-formed cracks tend
full cracks [26–28].

Fig. 2a explains the computational algorithm for extracting the
constriction pathways illustrated in Fig. 1. We summarize the proce-
dure as below:

i. Forward percolation: Starting from the water/oxide interface
(y=0), percolate forward from the 1st order neighbors and index each
new addition in descending order. Such index tangibly correlates with
the amount of time the water has reached that location. For full cracks,
the percolation will reach to the oxide/metal interface (y= s).

ii. Backward Percolation: The largest index in the oxide/metal
interface (y= s) indicates that water has reached there the earliest.
Therefore, starting from that element, we revert backwards from the 1st
order neighbors by ascending order of indexes until reaching back the
water/metal interface (y=0). The extracted path is the shortest dis-
tance between two interfaces. The usability of pores within the cracked
medium depends on if they have been captured as a part of the shortest
path. For the pathways of the same beginning/end (i.e. same length)
one of them is eliminated in favor of the other.

iii. Constriction Percolation: The constriction along each river
would control the diffusion and the flux of water. In order to capture
that, we periodically increase the thickness (Dim) in 2D (i.e. cube in 3D)
in cellular automata paradigm. Additionally starting from shortest
river, obtained in the first two steps ensures the shortest path for the
thickest possible river as well.

Fig. 2b illustrates the density of states (M) for the obtained partial
and full cracks based on original porosity and Fig. 3a is a sample il-
lustration based on square site percolation (42) beyond percolation
limit. (p > pc). The black routes are the only top-to-bottom connection
pathways and the color map value on each site correlates with the time
oxygen has reached that location. We will elaborate on this further in
Section 3.

The extraction of CRs from the given cracked medium would be
possible by implementing binarization on the original grayscale image
(Fig. 3b) via Otsu's method [29]. This could be possible choosing a
threshold such to minimize the intra-class variance σ2 defined as below:

minimize σ2 such that:

= +
+ = 1

2
1 0

2
2 1

2

1 2 (4)

where 0
2 and 1

2 are the variance for the divided black and white groups

Fig. 1. Schematics of cracks network (left) and their corresponding constriction rivers (right).
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and ω1 and ω2 are their corresponding fraction. Performing the proce-
dure in flowchart 2a on the original image (Fig. 3b),3 the CRs could be
obtained as shown in Fig. 3c. The real-time simulation of extracting of
constriction percolation pathways is shown in the supplemental mate-
rials.4

Furthermore the tortuosity of cracked pathways can be calculated
from the extracted CRs, the average tortuosity ¯ for site and bond
percolations are shown versus original porosity in 2 and 3 dimensions
in Fig. 4a. The computed diffusion coefficients from Eq. (3) is shown in
Fig. 4b respectively for partial (p < pc) and full (p > pc) cracks.

2.2.2. Scaling dimension
Scaling dimension α, in fact represent the scaling role of the per-

colating cluster versus the dimension of the medium. In other words, for
the percolation paradigm with the domain scale L, there is a power
coefficient α ∈ R for which the density of states for percolating clusterM
(L) correlates with the domain scale as:

M L L( ) (5)

We have performed the constriction percolation paradigm in square
bond paradigm (42), given in flowchart 2a from the center of the
medium, for various scales. Upon reaching the threshold (i.e. two facing
boundaries) the computations has been stopped. The density of states
for the connecting percolation pathways M(L) has been plotted against
the domains scale L in Fig. 5a, versus the exponent limits given in the
literature [26]. To ensure the statistical converges, each simulation
point is the average of 10 stochastic computations. Additionally, Fig. 5b
visualizes a sample percolation computation for the domain scale of

500.5

2.3. Formulation

During the oxidation process, initially the oxygen from the water
electrolysis starts filling in the zirconium matrix until reaching the
stoichiometric limit, where the zirconium dioxide forms. Subsequently
the oxide/metal (i.e. reaction site) growth deeper within the metal
during so-called pre-transition regime. However, after growing to a
sufficient extent, the fracture gradually occurs and the cracks accu-
mulate and propagate up to the corrosion front. Therefore, the transport
of oxygen dominantly occurs via water percolation within the crack
network, leading to a sudden jump in corrosion kinetics.

Merging two growth regimes, the evolving oxygen concentration
(O) is given via the extended diffusion Equation in 1D, for PWR case, as
[30]6 :

= +O
t

D T O
y

T O
y

( ) ( ) kO
2

2 (6)

where y is the depth variable and t is the time defined in Fig. 1. The
extra term in the RHS of Eq. (6) represents the thermo-migration. Ac-
cording to the Suret-ludwig effect, the vacancy mediated motion of
substitutional atoms is expected to occur down the temperature gra-
dient, while the interstitial solute move in the opposite direction [31].
The second extra term represents the consumption of oxygen due to
oxidation process and k is the reaction constant.

The diffusivity D(T) is regime-dependent and defined as below:

Fig. 2. Computational development chart (left) and crack density (right).

Fig. 3. (a) Sample site percolation: blue: cracked network, green: partial cracks, red: full cracks. (b) Original cracked oxide image. (c) Extracted constriction rivers
(blue: metal, white: voids, red: CRs). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3 Taken from experimental image at PNNL.
4 Also available here: https://www.youtube.com/watch?v=82lAUKEcqS0.

5 Note that the the parameters are dimensionless ([]).
6 For simplicity, the diffusion due to pressure is neglected.
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=D T
D Q

D T
T

( )
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RT
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1 Postw
s

0,ox
ox

0.
(7)

where the first equation shows the Arrhenius-type relationship [23] and
the second equation represents Speedy-Angell power law self-diffusion
of water [24]. Therefore the Δ(T) is obtained from chain derivation as:

=T

Q

T T

( )
RT

dT
dy

Pre

dT
dy

Post
s

ox
2

(8)

There is presumably no oxygen in the zirconium matrix at the be-
ginning, therefore the initial condition would be:

=O y( , 0) 0 (9)

On the other hand, on the water/oxide interface there is constant
concentration of oxygen provided from water radiolysis (O0):

=O y O( , 0) 0 (10)

O0 has been considered as the molar value of oxygen in the water
(Table 1).7

And no oxygen can escape from clad into the fuel side: (i.e. JO(L,
t)= 0) [32]

=O
y

L t( , ) 0
(11)

Generally during the diffusion, the oxygen should migrates inside
the zirconium matrix, however as the reaction occurs much faster rate
than the diffusion (k ≫ D), the entire diffused oxygen reacts towards the
formation of oxide scale upon reaching the reaction sites (i.e. diffusion
front). Therefore the effective depth of the oxide layer at a given time
could be obtained by leveling the entire diffused oxygen it with the
stoichiometric saturation value of zirconium metal to oxide as:

=s t
Z

O y t( ) 1
2

( , )dy
t

0 0 (12)

The coefficient of 2 is due to stoichiometric ratio of oxygen to

Fig. 4. The geometric role of cracks on the diffusivity.

Fig. 5. Scale studies.

Table 1
Simulation parameters.

Parameter Value Unit Ref.

D w0, 1.6× 10−8 m2/s [24]
Ts 215 K [24]
γ 2.1 [] [24]
Do.ox 10−10 m2/s [23]
Qox 52 kcal/mol [23]
Syc [1.2–5.2] GPa azom.com
K [72–212] GPa azom
T0 600 K [32]
TL 660 K [32]
L 50 μm [32]
O0 62.5 M [35]
Z0 71 M [36]
k 7.1× 10−6 s−1 [34]

7 Oxygen from water: = = × =×O 62.5 M0
1

16
mol

g
1

16
mol

g
1 gcm3 1000 cm3

L .
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zirconium (i.e. = 2N
N

O
Zr

).8

2.3.1. Transition state
The fracture in the zirconium oxide, is attributed to few factors,

such as the residual stresses during heating/cooling cycles and the
compressive stresses mainly via shear bands [7,33]. Here, we develop a
simple formulation based on the latter to describe the onset of cracking
throughout oxidation development. The treat the oxide scale as an
epitaxial layer on the substrate metal surface, exposed to biaxial
stresses. Assuming the original cross sectional area of zirconium metal
A0 and oxide depth L, the corresponding oxide volume would be
V=AL. Adding the increment of ds to the oxide depth would lead to
increment of volume as dV= Ady+ ydA. Due to confined boundaries
from lateral dimensions we have ydA≈0, and therefore the gsrowth
can be approximated as 1D.

Having one dimensional growth, the addition of the infinitesimal
depth ds into the oxide layer would increase the total depth by RPBdy.
(ds= RPBdy) and reduce the zirconium depth by dy. The variation in
total thickness (dy)tot consequently is:

= = =
R

R
R

(dy) (dy) (dy) ds ds 1 dstot ox zr
PB

PB

PB

The relative volume variation becomes:

= =
+V y
R

R L R s t
dV dy ( 1)ds

( 1) ( )
PB

PB PB

where (RPB−1) could also be tangibly interpreted as the addition
coefficient in 1D. Subsequently, for the biaxial loading, the compressive
stress is twice the homogeneous pressure σ=2P. Thus the homo-
geneous stress within the oxide scale could be predicted from real-time
computation as:

=
+

t K R d
R L R t

( ) 2 ( 1)
( 1) ( )

s t
PB 0

( )

PB PB (13)

where K is the bulk modulus. On the verge of fracture, the stress reaches
the compressive yield limit in the oxide medium.9 Upon reaching the
transition moment we have: σ(t)= Syc and s= sc. Therefore, solving Eq.
(13) analytically leads to:

=s R L
R

S
K1

exp
2

1c
PB

PB

yc

(14)

The range values from Table 1 for compressive yield stress and the
bulk modulus for zirconium oxide are Syc ∈ [1.2–5.2] GPa and
K ∈ [72–212] GPa, therefore the transition range of oxide scale would
be:

s [0.4–5.1] µmc (15)

The simulation parameters for oxide scale growth are shown in
Table 1.10 ,11

Using Eq. (6) with the transition scale predicted in Eq. (14) and the
parameters given in Table 1, the real-time stress development in the
oxide scale is computed in Fig. 6a in versus the porosity values from
partial cracks. From Eq. (6) and the corresponding oxide scale thickness

Eq. (12), the post transition growth rates has been illustrated in Fig. 6c
in higher porosities values. The coupled growth regimes, are illustrated
Fig. 6b with the corresponding sensitivity analysis for post transition
regime.12

2.3.2. Temperature profile
As the diffusivity values are very sensitive to the temperature,

consideration of it's distribution would be very useful realization.
Comparing the diffusivity of oxygen in zirconium (Dox≈10−15m2/s)
with thermal diffusivity of Zirconium (α≈10−8m2/s), one ascribes:

T
t

O
t

which implies that the kinetics of thermal propagation is significantly
higher and therefore at any infinitesimal period of time, temperature
profile has already reached the steady-state regime (i.e. T(y, t)≈ T(y)).
As the oxide layer grows, it makes a relative insulation between two
ends, and consequently the heat flux (q) decreases, until fracture. The
enthalpy of the oxidation is negligible relatively to the amount of
transferred heat (ΔHrxn ≪ q), therefore the heat flux is controlled by the
insulation of oxide layer:

= =q t T T
L

( ) dT
dy

dT
dy

L
ox

ox
Zr

Zr
Zr

0

(16)

where T0 and Ts represent the temperatures on the water/oxide and
oxide/metal interfaces respectively. The temperature at the oxide/
metal interface (Ts) correlates directly with their thermal conductivity
and is inversely proportional with the distance from each boundaries.
Therefore if we define the conductivity coefficient (β ≔ κ/l). Therefore
the interface temperature (Ts) could be linearly obtained as:

=
+

+
+

T T Ts L
ox

ox Zr
0

Zr

ox Zr (17)

where βZr= κZr/(L− s(t)) and βox= κox/s(t) respectively.

2.3.3. Numerical stability
We utilize the finite difference scheme to solve the PDE Eq. (6) in

space and time. If (Oi
j) represents the oxygen concentration at depth (yi)

and time (tj), adopting forward difference method in time and space
(FTFS), we get:

= + + ++
+O Q Q Q O Q Q O Q O(1 2 ) ( )i

j
i
j

i
j

i
j1

1 2 3 1 2 1 1 1 (18)

where Q1, Q2 and Q3 are the quotients defines as below:

=Q D t
y1 (19)

=Q

D t
y

Q

D t
y

T
T

RT
dT
dy

Pre

1 dT
dy

Post
2

ox
2

0

0

1

(20)

and

=Q k t3 (21)

where δt and δy are the segmentations in time and space. To ensure the
stability, we must have:

Q Q Q1 2 01 2 3

Therefore, to satisfy the criteria for both growth regimes, the following
condition would suffice:

t y
D

:
2

2

(22)

8 Total zirconium in action: = = × × =Z 71 M0
1
91

mol
g

1
91

mol
g

6.52 g
cm3

1000 cm3
L .

9 We treat the oxide-metal scale as a whole composite medium where the
fracture occurs within oxide compartment.
10 The values of compressive yield strength Syc and the bulk modulus K are

obtained from: https://www.azom.com/properties.aspx?ArticleID=133.
11 The value of reaction constant is considered to be corresponding to the

average grain size of 50nm in Ref. [34], Fig. 2 and considering the sample
height: l=0.1m as below:

= × = × × × × ×

× × = ×

k 4 10 mg . dm . d 4 10 10 (24 3600 s) (1/6.52)

10 10 m 7.1 10 s

9 2 2 1 9 2 g
m2

1

6 cm3
g

1 6 1

.

12 Note the logarithmic scale in this graph.
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3. Results and discussions

The computational results demonstrate the cooperative role of dif-
fusion and reaction for corrosion rate as well as significant sensitivity of
corrosion rate for the porosity values beyond percolation threshold.
Following the computational algorithm in flowchart 2a the percolation
pathways could be obtained through the crack network. The density of
states M for partial and fully-connecting cracks is shown in Fig. 2b. It is
obvious that upon increasing the porosity p, the percolation through the
partial cracks augments earlier than the full cracks. Such a contrast also
has been visualized in Fig. 3a, where the spectrum of colors represent
the amount of time the oxygen has been present in those sites. Albeit
possessing less density of states, the full cracks have significantly more
impact on the oxide growth rate, merely due to much higher value of
water self-diffusion coefficient relative to the zirconium oxide.

The method can predict the rate of corrosion from experimental
images by means of image processing. The bare image from cracked
zirconium oxide in Fig. 3b can be binarized via Otsu's minimization of
intraclass variance σ2 in Eq. (4). The extracted CRs are shown in Fig. 3c.

Performing scale studies, Fig. 5a shows that the mean statistical
density of states for the percolation samples, correlates with the power
law growth regime 1.9 < α < 2.0 as a verification [26]. Additionally
in this graph, the bond percolation curve stands higher than the site
percolation. This comparison will be verified mathematically in Eq.
(23). Note that upon reaching the percolation threshold, the constric-
tion river most likely is the thinnest on the verge of percolation
threshold (p≈ pc).

Given certain porosity value p, the water is transported through a
torturous pathway from the water/metal interface to reach the oxida-
tion front (i.e. oxide/metal interface). For lower values of porosity,
merely close to the percolation threshold p≈ pc, there will be a sig-
nificant search for the shortest pathway due to scarcity of the pene-
trable areas and the tortuosity value of the shortest path will be the
highest. As the porosity value increase, the possibility of more direct
connection is also becomes greater and therefore the corresponding
tortuosity value is reduced, such that in the limit of full porosity (p→1)
the connection routes are almost straight and the tortuosity value
merges to unity. This trend has been illustrated in Fig. 4a and shows a
nice agreement with previous findings [37,38]. Additionally, in 2D
percolation the transport is possible from 4 pathways, where in 3D the
percolation can occur from 6 directions, where, in each case, only one
direction is considered to be straight. Thus, the probability of twisted
percolation in 2D would be 3

4
, whereas in 3D it would become 5

6
. This

clearly shows that the 3D percolation would generate more tortuosity in
average versus 2D percolation, as shown in Fig. 4a.

The Diffusion coefficient values based on Eqs. (1) and (3) are illu-
strated in Fig. 4b. Due to lower tortuosity values in 3D relative to 2D
percolation (Fig. 4a), it is obvious from Eq. (1) that the diffusion
coefficient also follows the same comparative trend. Additionally, the
values for bond percolation is more than site percolation, hereby we

prove that this is always true.
Given certain porosity p, the bond percolation develops more dif-

fusion coefficient versus site percolation. The underlying reason is that
any square bond percolation paradigm (44), pb can be interpreted by an
equivalent bond percolation scheme (44), peq,s where each connection
point (i.e. corner) could be treated as a site per see. Assuming the di-
mension in a 2D bond percolation to be d and the number of available
sites for percolation is M, the porosity will be calculated as:

=p M
db 2

where the dimension in the equivalent site percolation would be
2d+1, due to inclusion of connection points as available site.
Therefore, the elements in equivalent site percolation paradigm would
be n+(d+1)2, and:

= + +
+

p M d
d

( 1)
(2 1)seq,

2

2

Hence, we need to prove the following inequality:

+ + +
+ +

<M d d
d d

M
d

2 1
4 4 1

2

2 2

performing rearrangements and since always pb < 1, we have M < d2

and we arrive at:

+ +
< + + <
d d M d

d d d d d d
2 3Md 4Md

2 3 4 0
4 3 2 2

4 3 4 3 2 2

Therefore we only need to prove the RHS inequality, which gets
simplified into:

+ <d d2 ( 2) 02

since this equation is always true, we have:
>p ps beq, (23)

Thus, given a certain porosity, the bond percolation creates a larger
cluster (i.e. available sites) versus the site percolation, which is obvious
in Fig. 4b.

For the transition regime based on compression stress, if the average
values are considered for the range of compressive yield strength and
the bulk modulus given in Table 1, the mean value for the critical
thickness for the transition state from Eq. (15) would be sc=2.75 μm
which is in nice agreement with the values given in current literature
[39,2]. Such transition state has been addressed with the close proxi-
mity in recent findings with an alternative method as well [32].

The large amount of Pillar-Bedworth ratio RPB indicates upon for-
mation and advancing oxide layer, the compressive stresses accumulate
in real time. We have captured such stress augmentation in Fig. 6a,
versus the pre-transition porosity p (i.e. partial cracks/ imperfections),
until the yield limit (i.e. fracture). It is obvious that the higher density
of imperfections will reduce the transition time. From Eq. (13) the stress
growth σ(t) depends to the oxide scale s(t). This correlation in particular

Fig. 6. (a) Pre-transition growth regime. (b) Sensitivity analysis growth regime during the post-transition regime. (c) Growth regime after the fracture for difference
porosity values.
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is linear (i.e. direct) for higher values of original thickness, where de-
nominator will remain relatively invariant, and therefore the cubic
growth regime is expected (as will be explained next) for stress growth
behavior, where s ≪ L. Nevertheless, the real-time stress can be ob-
tained from Eq. (13) as:

= +t K R
R

s t( ) 2 ln 1 ( ) 1)PB

PB

which shows exponential decay behavior as illustrated in Fig. 6a.
Fig. 6b illustrates the all-in-one plot for oxide evolution. The

breakaway point has been analytically calculated from Eq. (15) and the
sensitivity analysis has been performed for the post-transition regime
based on the logarithmic distance from percolation threshold. The
growth regime in either stage can be approximated with the power law
growth in time as:

=s t( ): atb (24)

Correlating the pre-transition growth regime with power law, the
exponent value of bPre=0.35 is obtained, which is in very high
agreement with the value of b 1

3 in the literature [40,7,32,33]. On
order to verify the simulation results, we use corresponding experi-
mental results from [7], where the increase in the mass of oxide samples
have been correlated with a cube of time and within 38 days of cor-
rosion has possessed the weight addition of 18 mg

dm2
13 which translates to

the oxide thickness value of 2.76 μm.14

For fundamental understanding of cooperating role of diffusion,
reaction and thermo-migration terms, one can start from the typical
diffusion equation given as below:

=O
t y

D O
y (25)

The typical solution for this equation will have a parabolic trend.
(s t 1

2 ). The subtraction of significant consumption term (−kO) with
the presence of thermo-migration term D T( ) O

y in Eq. (6), would bend
down (i.e. reduce) the oxide evolution curve, such that in our simula-
tions it correlates with a lower power value (i.e. b≈0.36). The afore-
mentioned bending effect has been addressed by presence of ex-
ponentially reducing electric charge distribution and the corresponding
electrostatic field at reaction sites during previous study [32].

Additionally, Fig. 6b addresses the extremely high sensitivity of the
growth kinetics upon reaching the percolation threshold. (pbond=0.5,
psite=0.5928) as plotted in logarithmic scale [41]. In fact, during very
the initial moments of post-transition regime, since there is abundance
of oxygen in the reaction sites, the oxide growth will be merely reaction-
limited. Therefore the transport regime will be negligible and the
growth in the oxide/metal interface can be approximated by:

O
t

kO
post,0 (26)

Note that due in the interface of oxide and metal with the in-
finitesimal thickness δy, and any other cracked region, the evolving
concentration of oxygen O initially is only a function of time. Eq. (26)
can be solved analytically as below:

= +O c y c y( )exp( kt) ( )post,0 1 2

During the initial moments, the oxygen is already available in the
reaction sites through cracks, therefore:

=O O(0) 0

On the other hand, the equation should should satisfy itself in the initial
moment. Hence, from the two boundary conditions, we have: c1=O0

and c2= 0 and the time-dependent initial concentration profile turns to
be:

=O O exp( kt)post,0 0

In order to obtain the initial oxide thickness spost,0(y, t) we can in-
tegrate this concentration profile based on Eq. (12) where the devel-
oped oxide thickness turns to be:

=s y t O y
Z

( , )
2

exp( kt)post,0
0

0 (27)

Such initial exponential decay regime in time has been also addressed
in the past [42]. Note that the initial profile is linear versus depth y which
is also shown in the literature [7]. Such a initially linear growth regime
could be also discerned during both growth regimes in Fig. 6b. Never-
theless, our understanding from post-transition growth regime is via de-
veloping our analytical methods due to lack of research in the literature.

As the oxide layer evolves the diffusive term +D T( ( )O
y

O
y

2
2 ) be-

comes relatively more significant due to depletion and scarcity of oxygen
in reaction sites, where the growth regime turns to be diffusion-limited.
Such a growth regime correlated with square root of time (s t 1

2 ). In fact
the coupled diffusion-reaction (i.e. consumption) evolution of oxide scale
is approximated with a power-law growth curve in time (c2(y)tb) (Eq.
(24)), which is below the growth by sole diffusion and above the growth
by sole reaction, therefore one expects the following:

< <c y c y t c y t( )exp( kt) ( ) ( )b
1 2 3

1
2 (28)

where {c1, c2,c3} > 0 are time-independent coefficients. Given large-en-
ough time, the role of the coefficients in the inequality becomes negligible
and in order for Eq. (28) to be always true, we must have:

< <b0 1
2

Which is addressed throughout the literature and during this study
[17,43,44]. In fact the power coefficient b should express the co-
operative interplay between the corrosion-assisting diffusion and corro-
sion-resisting reaction terms.

Anther important factor for the diffusion-reaction development is to
ensure that there is always oxygen available for consumption in the re-
action sites, before reaching the stoichiometric (i.e. saturation) limit. In
other words, the transport (i.e. diffusive) term of oxygen should always be
competitive with the reactive (i.e. consumption) term. Such juxtaposition
during large time intervals can be qualitatively expressed as below15 :

>D t O y
Z

O y
Z

2
2

exp( kt)
2

(1 kt)
1
2

1
2 0

0

0

0

where D t2 1
2

1
2 is the mean square displacement of the diffusion interface

[45] and the RHS is the movement of the reactive interface, given in Eq.
(27). Re-arranging this equation yields to the following dimension-free
inequality:

+ >kt qt 1 01
2 (29)

where q Z D
O y

2 20
0

is the coefficient.16 Eq. (29) is quadratic has a real root
(Δ= q2+4k > 0) given below:

=
+ +

t
q q k

k
4

2reac diff

2 2

(30)

which means that there is a critical time-interval treac→diff before which the
consumption is dominant (i.e. reactive) and after that the concentration
accumulation occurs. Such transition from reaction-limited to transport-

13 Ref. [7], Fig. 2.
14 18 = × = × × =18 1.8 10 m 2.76 µmg

dm2
10 3

102
g

cm2
1

6.52
5 m.

15 By means of Taylor expansion, the exponential term can be expressed
as: , where the second order term O(k2) is negligible due
to very small value of reaction constant k (Table 1).
16 with the unit of s

1
2 .
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limited depends on variables forming q. In other words the transition takes
the longest, q is smaller or comparable with k. This is very reasonable since
the higher depth values usually 'suffer breathing’ due to lack of oxygen
inflow. Additionally, the higher values of reaction constant k will cause
more consumption rate and will augment this value respectively. On the
interface, where y→0, we have q≫ k and the transition is immediate (i.e.
treac→diff≈0).

Fig. 6c represents the growth regime of the oxide scale for the
porosity values beyond the fracture porosity (p > pc). The most distinct
curve here is, in fact, in the vicinity of percolation threshold
(p≈ pc=0.5). Assuming to maintain the same porosity upon fracture,
the power coefficient has been obtained as (bpost≈0.34). The decrease
in the power value relative to can be interpreted as the negligence of
the thermo-migration during the post-transition period, which in fact
will help to increase the term O

t
relative to pre-transition regime. In

fact, the post-transition growth regime, can be interpreted a second pre-
transition regime, where the oxygen has made ways through the reac-
tion site and therefore the growth regime is as expected. Additionally,
this is also the underlying reason for quasi-cycling growth behavior (i.e.
multiple oxidation and fracture stages of zirconium and its alloys)
throughout corrosion, which has been addressed in numerous places in
the literature [33,46].

4. Conclusions

In this paper, we have developed a constriction percolation para-
digm for the pre- and post-transition growth regime of zirconium, dis-
tinguishing the transition by means of when the crack density p meets
the percolation threshold pc. Consequently we have established a cou-
pled diffusion-reaction framework to predict the growth regime
throughout the corrosion event, extending beyond fracture. We have
verified the results by means of literature, the contrast between the
square site and bond percolation methods and analytical methods.
Additionally we have developed a formulation for compression-based
yielding of zirconium to predict the onset of the transition. In parti-
cular, we have proved that there is a critical time, in which the cor-
rosion event moves from reaction-limited oxide evolution to diffusion-
limited growth regime and we have analytically described the range of
the power coefficient for the power-law growth kinetics.
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