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We develop a continuum percolation procedure for the aggregation of the elliptic fillers in the 2 
and 3-dimensional media. Given random distributions for the locus and rotations of the elements 
with a specified original density 𝑝, each medium achieves chains of elements through overlapping 
to achieve a connection density of 𝜌. In this regard, typically 3𝐷 aggregation is more efficient 
than 2𝐷 due to the possibility of additional connectivity from the in/out (i.e. depth) directions. 
Hence, when increasing the number of fillers the 3D percolation system experiences an early 
increase in the connection density 𝜌, which typically occurs in the neighborhood of the percolation 
threshold 𝑝𝑐 . We initially develop a new iterative method to compute the percolation threshold 𝑝𝑐
in finite systems. Subsequently, we show that such early divergence between 2D-3D percolation 
systems is followed by a later convergence stage, as the number of fillers progressively increases. 
Consequently, we show, conceptually and computationally, that the maximum 2D-3D difference 
in the connections density Δ𝜌𝑚𝑎𝑥 correlates directly with the respective 2D-3D difference in the 
percolation thresholds Δ𝑝𝑐 , where a large pool of computational samples were generated by 
varying the aspect ratio as well as the relative scale of the particles. The results and respective 
analyses could be useful for the design of binary composite membranes of a specified thickness 
(i.e. thin→ 2𝐷, thick→ 3𝐷) for achieving the desired homogenized physical property.

1. Introduction

Percolation theory has been developed and utilized in a wide range of disciplines [1] as a powerful tool, particularly when com-
bined with the probabilistic methods [2] such as randomness in the generation, distributions, and connection pattern of particulates 
[3]. The versatility of percolating media spans from the trees [4,5] and lattices [6,7] to multidimensional continuous particles [8], 
allowing the emergence of highly connected clusters providing specific thresholds [9], which is a measure for criticality [10].

Application-wise, the percolation thresholding is used to explain the sudden transition in physical/chemical behavior during 
the transport in the porous media [11] and underground hydrodynamic flows [12], to predict the morphology and fracture of 
composite materials [13], reaction kinetics [14], and biological systems [15]. Meanwhile, the percolation across the connected 
elliptic-shaped particles can be used for the percolation estimating the homogenized electrical [16] and thermal [17] conductivity 
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(a) 2𝐷 percolation sample for edge-to-edge connection via the shortest path 
(𝑝𝑐 = 0.64, 𝜌0 = 0.004) [16]. Gray ellipses: part of the original random distribu-
tion, colored ellipses: the connection pathways.

(b) 3𝐷 percolation sample for plane-to-plane connection via the shortest path 
(𝑝𝑐 = 0.26, 𝜌0 = 0.004) [44]. Blue lines: the major axis for the ellipses of an 
original random distribution, red ellipses: the connection pathways.

Fig. 1. Examples of the enhancement in the top-to-bottom conductivity of the polymer medium (i.e. empty white space) via spreading the elliptic fillers of significantly 
higher conductivity in (a) 2 and (b) 3 dimensional domains, which is particularly achieved when connections are established [44].

of the binary composites, as well as the elastic modulus of fractures media [18], porous materials [19], which contain the excluded 
volume [20].

Mathematics-wise, several concepts have been developed to explain the percolation [21], such as the connection pattern of the 
adjacent elements [22], or the tight lower bound for the percolation threshold [23]. Materials-wise, the percolation has been uti-
lized to study tensile modulus for polymer/clay nano-composites (𝑃𝐶𝑁) [24], and the cementitious composites [25], the electrical 
conductivity of the resins [26] and composite polymers [27].

Meanwhile, the random placement of the specific shapes within continuous multidimensional domains has given rise to the 
formalization of continuum percolation theory [28]. In particular, micro-canonical simulations that use the union-find algorithms 
have been utilized, where accurate values for the percolation thresholds (i.e. density for end-to-end reach) have been found for several 
shapes such as squares [29], disks [30] rectangles [31], curved fibers (disco-rectangles) [32], concave-shaped (centrosymmetric) [33] 
and polydisperse [34] pores, where the combined role of pore shape and size determines the diffusivity [35] and permeability [36]. 
Additionally, the 2𝐷 versus 3𝐷 connection of elliptic particles has been compared with a focus on the medium-thickness [37].

Regarding the clustering behavior of the connected elements versus the original density 𝑝, several Sigmoidal (i.e. 𝑆−shape) 
models have been proposed, which illustrate the asymptotic converging trends both at initial and final connected density values 𝜌
[38]. In this regard, the Sigmoidal-Boltzmann [39] and Sigmoidal-Dose [40] models provide similar results, the Sigmoid-Hill [41] 
and Sigmoid-Logistics [42] paradigms lead to diverging interpretations. In this regard, the shape approximation of the particles as 
elliptic geometry could be used as a tool for random geometries in the given granular medium [43].

In this paper, we develop both 2𝐷 and 3𝐷 models in circular (i.e. 2𝐷) and spherical (i.e. 3𝐷) domains for computing the center-
initiated connected density 𝜌 of the elliptic particulates, each with the elemental density of 𝜌0 versus the given original medium 
density of 𝑝. In this regard, the connected density 𝜌 of the propagating connected cluster, which is a measure for its maximum reach, 
is obtained and tracked for both 2𝐷 and 3𝐷 systems versus the elemental density 𝜌0 of the filling particulates and their aspect ratio 
𝑟. Subsequently, the maximum difference of the connected density Δ𝜌𝑚𝑎𝑥 in 2 and 3 dimensions has been found to be correlated 
with the difference in the center-to-border percolation thresholds (i.e. Δ𝑝𝑐 = 𝑝𝑐,2 − 𝑝𝑐,3). Consequently, the role of the shape of the 
ellipses/ellipsoids leading to the connected density 𝜌 has been analytically addressed. The results and respective analyses could be 
used for determining the design of binary composite membranes of a specified thickness (i.e. thin→ 2𝐷, thick→ 3𝐷) to obtain the 
desired homogenized physical property, which is determined via the efficacy of the percolation.

2. Methodology

Given a dispersed medium of randomly placed elliptic particulates, there is a certain tendency for overlapping of the elements. 
Such tendency correlates directly with the original areal/volumetric density 𝑝 as well as the geometry of the particles. For instance, 
Figs. 1a and 1b from prior works represent samples of the 2𝐷 and 3𝐷 edge-to-edge percolations via the connected elliptic elements, 
where the edge to edge connections are obtained in the original densities of 𝑝𝑐,2 ≈ 0.64 (2D) and 𝑝𝑐,3 ≈ 0.26 respectively (3D). Herein, 
we define the percolation procedure consisting of random placement of the elliptic/ellipsoidal particulates within a circular domain 
of the scale 𝑙, as shown in the Fig. 2a, where the dispersion of the ellipses/ellipsoids with original areal/volumetric density 𝑝 has 
a certain tendency for making overlaps. Hence, beginning from the prescribed element in the center, some fraction of particulates 
could overlap and form a percolating cluster. The percolation procedure could stop, either when the connected cluster touches the 
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(a) The percolation model: The particles are randomly placed in a circular 
domain of scale 𝑙. The percolation starts from the central element and propa-
gates via the overlappings toward the outer boundary (colored region) where 
the rest of the particles (gray) remain disconnected.

(b) Characterization of an ellipse indexed 𝑘 ∈ {1,… ,𝑁}, with 
center position 𝑥0,𝑖 (𝑖 ∈ {1,2} in 2D and 𝑖 ∈ {1,2,3} in 3D), the 
axis 𝑎𝑖 (2𝑎1 and 2𝑎2 are shown), and the orientation 𝛼𝑗 (𝛼3,𝑘 is 
shown; 𝑗 = 3 in 2𝐷 and 𝑗 ∈ {1,2,3} in 3D).

Fig. 2. The percolation procedure: (a) the domain-scale characterization: The order of colors from blue to red commensurates with their distance from the central 
element. The convex hull of the propagating cluster is illustrated in a red dotted enclosure, which is a measure of the cluster reach. (b) the element-scale characterization.

boundary, or continue all the way, until no further progress can be made. The former determines the percolation threshold 𝑝𝑐 , and 
the latter signifies the density of connected cluster 𝜌, as a fraction of the total. Hence:{

Touching boundary → Percolation threshold 𝑝𝑐
All the overlaps considered → Connection Density 𝜌

Since the connected cluster is a subset of original number of particulates, one has:

𝜌 ≤ 𝑝 (1)

where the overlaps in the original density 𝑝 and the connected density 𝜌 are counted only once. In fact, if the original density 𝑝
gets large enough, the cluster can reach the domain boundary, and the center-to-border connection gets established. The boundary 
is considered to be rigid, which means that the connection to the border does not transfer into the opposite direction (an event that 
occurs in periodic boundary condition). The original density leading to such center-to-end connection is the percolation threshold 𝑝𝑐 .

Having one extra dimension, it is obvious that the continuum percolation in 3𝐷 has a higher possibility of making a connected 
cluster than its 2𝐷 counterpart,2 and hence it will have an earlier end-to-end connection threshold occurring in a lower given original 
density 𝑝. As an example, a random distribution of the circular disks in a square domain achieves the end-to-end connection in the 
original density (i.e. percolation threshold) of 𝑝𝑐,2 ≈ 0.68 [30,45] while such connection occurs spherical elements randomly dispersed 
in a cubic domain, at very earlier original density 𝑝𝑐,3 ≈ 0.29 [46,47]. Therefore:

𝑝𝑐,3 ≤ 𝑝𝑐,2 (2)

where 𝑝𝑐,2, 𝑝𝑐,3 are the percolation threshold of the 2 and 3 dimensions respectively, and the equal sign occurs when the third 
dimension becomes infinitely thin.

Such an early raise causes the connection density 𝜌 to be higher in 3𝐷 than 2𝐷 counterpart in the same original density (i.e. when 
𝑝3 = 𝑝2):

𝜌3 ≥ 𝜌2 (3)

Considering the inequalities above Fig. 3, visualizes the anticipated growth pattern in the obtained connection density 𝜌 versus the 
assigned original density 𝑝, as the particles fill the space progressively. Obviously, one could initially realize the following conditions, 
regardless of the dimension:

2 The equivalency of the 2D and 3D systems will be addressed in the section 2.2.
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Fig. 3. The anticipated growth pattern in the connection density 𝜌 versus the original density 𝑝, as the particles fill the space progressively in 2D (blue) and 3D (red) 
media. The span between early divergence (i.e. opening) and later convergence (i.e. closing) zones Δ𝑝𝑐 , leads to a maximum difference in the connection density 
Δ𝜌𝑚𝑎𝑥 .

• In the absence of any original ellipses in the medium (𝑝 = 0), no connecting cluster will exist (𝜌 = 0).
• When the particles fill the entire space (𝑝 = 1), all the particles become connected as well, and the connection density merges to 

unity (𝜌 = 1). In such a condition, the assigned number of particles 𝑁 gets infinitely large (𝑁 →∞).

Thus for the relationship of original density versus connection density (𝑝, 𝜌), the two initial and final positions of (0,0) and (1,1) will 
be shared between the 2D and 3D percolating systems. Nonetheless, since 𝜌3 ≥ 𝜌2, the 3D percolation system will have an earlier 
increase, which forms the divergence zone as illustrated in the Fig. 3. However, since both percolation systems share the common 
final coordinate of (1,1), such divergence, must be followed by a later convergence as shown in this Figure. Therefore a zone of 
difference is established between the two percolation systems, which roughly resembles a diamond. As well, the initial divergence 
and later convergence signifies the existence of a maximum difference value in the connection density Δ𝜌𝑚𝑎𝑥 occurring at a certain 
original density. In particular, since the significant portion of the increase in the density occurs at the percolation threshold value 𝑝𝑐 , 
the span of the percolation thresholds in 2D and 3D (i.e. 

[
𝑝𝑐,3, 𝑝𝑐,2

]
) could be examined for exploring the location and the value of 

such maximum difference Δ𝜌𝑚𝑎𝑥. In fact, from the curves in Fig. 3, a larger difference in the percolation thresholds Δ𝑝𝑐 would suggest 
a larger maximum difference in the connection density Δ𝜌𝑚𝑎𝑥 . In other words, the larger width in the highlighted zone, should yield 
a correctable larger height as well, which we will computationally explore in detail.

2.1. Elliptic particulates

Fig. 2b illustrates the 2𝐷 sample of an elliptic particulate. Having the axial values 𝑎𝑖 (
{
𝑎1, 𝑎2

}
in 2D and 

{
𝑎1, 𝑎2, 𝑎3

}
in 3D), center 

coordinates 𝑥0𝑖 (
{
𝑥01, 𝑥02

}
in 2D and 

{
𝑥01, 𝑥02, 𝑥03

}
in 3D) and rotations 𝛼𝑖 (𝛼3 in 2D and 

{
𝛼1, 𝛼2, 𝛼3

}
in 3D), the loci of its surface 

𝑥𝑖 (
{
𝑥1, 𝑥2

}
in 2D and 

{
𝑥1, 𝑥2, 𝑥3

}
in 3D) can be defined as:(

𝑋 −𝑋0
)𝑇

𝑅𝑇𝐴𝑅
(
𝑋 −𝑋0

)
= 1 (4)

where 𝑋 and 𝑋0 are the locus of the border and center respectively as:

𝑋 =
⎡⎢⎢⎣
𝑥1
𝑥2
𝑥3

⎤⎥⎥⎦ , 𝑋0 =
⎡⎢⎢⎣
𝑥01
𝑥02
𝑥03

⎤⎥⎥⎦ (5)

and 𝑅 is the rotation matrix around the 3 axis with values of 𝛼1, 𝛼2 and 𝛼3 as:

𝑅 =
⎡⎢⎢⎣
1 0 0
0 cos𝛼1 − sin𝛼1
0 sin𝛼1 cos𝛼1

⎤⎥⎥⎦
⎡⎢⎢⎣

cos𝛼2 0 sin𝛼2
0 1 0

−sin𝛼2 0 cos𝛼2

⎤⎥⎥⎦
⎡⎢⎢⎣
cos𝛼3 − sin𝛼3 0
sin𝛼3 cos𝛼3 0
0 0 1

⎤⎥⎥⎦ (6)

The signs of the individual rotations in this model have been aligned and verified with the function Sphere in MATLAB, which is 
elaborated for individual rotations in Appendix B.

As well, the scaling matrix 𝐴 is defined as:

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 
𝑎21

0 0

0 1 
𝑎22

0

0 0 1 
𝑎23

⎤⎥⎥⎥⎥⎥⎥⎦
(7)

Applied Mathematical Modelling 143 (2025) 116007 

4 



A. Aryanfar, M. Yamani and W.A. Goddard 

Table 1
The axis values for prolate and 
oblate ellipsoids as a function of as-
pect ratio 𝑟 and the elemental den-
sity 𝜌0 (= 𝜌2,0 = 𝜌3,0).

Geometry Prolate Oblate 

𝑎1
�̄�

3√
𝑟2

�̄�

3√𝑟

𝑎2
3√
𝑟�̄�

�̄�

3√𝑟

𝑎3
3√
𝑟�̄�

3√
𝑟2�̄�

In particular, the 2𝐷 procedure is a simplified version and can be established via removing the third dimension and assigning: 
𝑥3 = 𝑥0,3 = 0, 𝛼1 = 𝛼2 = 0, 𝑎3 = 1. Similarly the notions of (< 1) and (> 1) represent if a point falls inside and outside the ellipse 
(ellipsoid) respectively. In this regard, the equivalency of the setup between the 2 and 3 dimensions has been defined as below:

2.2. Equivalent definitions

The geometrical characterization of the elliptical elements has been performed via normalizing the respective axis 𝑎1 ≥ 𝑎2(≥ 𝑎3)
to a maximum (i.e. major) value 𝑎1, which forms the axial ratio 𝑟𝑖 as:

𝑟𝑖 =
𝑎𝑖

𝑎1
(8)

Hence, the measure of the relative size of a single particle 𝜌0 can be defined as:

𝜌0 =
𝑉0

𝑉𝑇𝑂𝑇

(9)

In this context, the 2D particle has been treated as a special case of a 3D ellipsoid, where the area 𝐴 is a special form of volume 𝑉 , 
as a measure for occupying space. 𝑉0 is a volume (area) taken by a single particle and 𝑉𝑇𝑂𝑇 is the total volume (area) for the circular 
domain of the scale 𝑙 (in 2D: 𝑉𝑇𝑂𝑇 = 𝜋

4 
𝑙2, and in 3D: 𝑉𝑇𝑂𝑇 = 𝜋

6 
𝑙3). Meanwhile, 𝜌2,0 and 𝜌3,0 represent the elemental densities in 2 

and 3 dimensions, respectively. Also, the original density 𝑝 is simply defined as:

𝑝 = 𝑉

𝑉𝑇𝑂𝑇

(10)

where 𝑉 is the space occupied by the randomly dispersed original ellipses (excluding overlaps). Fig. 2a illustrates a 2D percolation 
sample, where the occupied space 𝑉 accounts for all the connected ellipses to the central element (colored) and the unconnected 
ellipses (gray).

For the percolation, initiating from the central particle and growing through the overlapping particles, a cluster of connected 
elements is generated with the volume 𝑉Clus (excluding overlaps). Hence the obtained connected density 𝜌 would be:

𝜌 =
𝑉Clus

𝑉𝑇𝑂𝑇

(11)

The subscripts of 2,3 in the Equations (10) and (11) (i.e. 𝑝2, 𝑝3 and 𝜌2, 𝜌3) denote the 2 or 3 dimensions respectively. The computing 
method for determining 𝑉 and 𝑉Clus is explained later in the section 2.5.

The 2 and 3 dimensional procedures can be made equivalent by setting identical elemental densities (𝜌2,0 = 𝜌3,0). As well, the 
geometry is specified by ratios 

(
1, 𝑟2

)
in 2D and by ratios 

(
1, 𝑟2, 𝑟3

)
in 3D. In order to avoid the third dimension as an extra degree 

of freedom, the geometry in 3D will be expressed in prolate (1, 𝑟, 𝑟) and oblate (1,1, 𝑟) forms while that in 2D will be given by (1, 𝑟).
The axis values 𝑎𝑖 can be obtained directly from the elemental density 𝜌0 and the aspect ratio 𝑟. In 2D, the elemental volume 

(area) is 𝑉0 = 𝜌2,0𝑉𝑇𝑂𝑇 , and the average radius �̄� would be �̄�=
√

𝑉0
𝜋

. Hence, the axis values 𝑎1 and 𝑎2 are obtained as:

𝑎1 =
1 √
𝑟
�̄� , 𝑎2=

√
𝑟�̄� (12)

Similarly, in 3D the elemental volume is 𝑉0 = 𝜌3,0𝑉𝑇𝑂𝑇 . The average radius �̄� becomes �̄� = 3
√

3𝑉0
4𝜋

, for which the axis values 
𝑎1, 𝑎2, 𝑎3 for prolate and oblate geometries are obtained using Equation (8), as shown in Table 1.

Finally, by varying the elemental density 𝜌0 and the axial ratio 𝑟, numerous percolation scenarios can be established in both 2D 
and 3D.
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2.3. Adjacency matrix Γ𝑖,𝑗

The connection of the percolating cluster is defined by the adjacency matrix Γ𝑖,𝑗 which can be utilized to extract the percolation 
pathways. It is a boolean operator such that for elliptic particulates 𝑖 and 𝑗:

Γ𝑖,𝑗 =

{
1 Overlap

0 Separated
(13)

and can be explored both analytically and numerically. In 2D, the surface equation (4) gets reduced to:

[
𝑥1 − 𝑥01 𝑥2 − 𝑥02

] [ cos𝛼3 sin𝛼3
− sin𝛼3 cos𝛼3

]⎡⎢⎢⎢⎣
1 
𝑎21

0

0 1 
𝑎22

⎤⎥⎥⎥⎦
[
cos𝛼3 − sin𝛼3
sin𝛼3 cos𝛼3

][
𝑥1 − 𝑥01
𝑥2 − 𝑥02

]
= 1 (14)

where (𝑥, 𝑦) is a location on the surface, 
(
𝑥01, 𝑥02

)
is the center coordinate, 𝛼3 is the rotation angle normal to the plane, and 𝑎1, 𝑎2 are 

the major and minor axis respectively. A simple analytical mode for the overlap of two ellipses 𝑖 and 𝑗 is to use of the Vieillard-Baron 
contact function Ψ [48] as:

Ψ= 4
(
𝑓 2
𝑖
− 3𝑓𝑗

)(
𝑓 2
𝑗
− 3𝑓𝑖

)
− (9 − 𝑓𝑖𝑓𝑗 )2

where the coefficients 𝑓𝑘 (𝑘 = {𝑖, 𝑗} to avoid repetition) are the coefficients in the cubic polynomial of eigenvalues derived by setting 
the determinant of the pencil of conics of the intersection points between the two ellipses to zero, and Ψ is the discriminant of this 
determinant. The coefficients 𝑓𝑘 are defined as: [49–51]:

𝑓𝑘 = 3 +𝐴−𝐵 −𝐶

and the coefficients 𝐴,𝐵,𝐶 are obtained as:

𝐴 =
(

𝑎𝑖

𝑎𝑗
−

𝑎𝑗

𝑎𝑖

)2
sin2

(
𝜃𝑗 − 𝜃𝑖

)
[
𝐵

𝐶

]
=
⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

1 
𝑎1

0

0 1 
𝑎2

⎤⎥⎥⎥⎦
[

cos𝜃𝑘 sin𝜃𝑘
−sin𝜃𝑘 cos𝜃𝑘

][
𝑥01,2 − 𝑥01,1
𝑥02,2 − 𝑥02,1

]⎞⎟⎟⎟⎠
2

The connection criterion is thus extracted from the sign of the discriminant and determinant coefficients as follows [48]:

if 
{
Ψ < 0 or

{
Ψ, 𝑓1, 𝑓2

}
> 0

}
→ Γ𝑖,𝑗, = 1

In 3D, previously several methods have been expressed for determining the overlap [52–54]. In this study we use the numerical 
method, in which we create a 3D grid in the entire domain and label the points falling inside each ellipsoid. In this regard, if two 
ellipsoids are too far apart, they are obviously separated. Therefore, to reduce the computational cost, one simple no-overlap condition 
is that the center-to-center distance should be greater than the sum of their largest axis 𝑎1 :|||𝐗0,𝑖 −𝐗0,𝑗

||| > 2𝑎1 → Γ𝑖,𝑗 = 0 (15)

Bypassing this condition, the intersection of the ellipses 𝑖 and 𝑗 requires sharing at least one identical inner point 𝐗 falling 
simultaneously in both volumes, satisfying the following condition:

if ∃𝑋 ∶
⎧⎪⎨⎪⎩
(
𝑋 −𝑋0,𝑖

)𝑇
𝑅𝑇

𝑖
𝐴𝑅𝑖

(
𝑋 −𝑋0,𝑖

)
≤ 1

, → Γ𝑖,𝑗 = 1(
𝑋 −𝑋0,𝑗

)𝑇
𝑅𝑇

𝑗
𝐴𝑅𝑗

(
𝑋 −𝑋0,𝑗

)
≤ 1

(16)

where 𝑋0,𝑖,𝑋0,𝑗 are the center positions and 𝑅𝑖,𝑅𝑗 are the rotation matrices of the ellipsoids 𝑖, 𝑗 and 𝐴 is the scaling matrix.
The accuracy of the adjacency matrix has been verified via multitudes of visualizations; examples are provided in the Appendix C.

2.4. Percolation threshold 𝑝𝑐

The percolation threshold 𝑝𝑐 could be defined either as the minimum original density 𝑝 where the propagating connected cluster 
achieves reach to the boundary of the circular medium, or the original density where 50% of the elements are part of the connected 
cluster. Herein we choose the former definition. The presented method for locating the percolation threshold 𝑝𝑐 , is in fact an alternative 
description to the finite size scaling method (FSS) which is developed for finite systems (albeit we have explored a wide range of 
particle-to-domain scale). While the FSS method tracks the percolation probability 𝑝 in various domain scales 𝑙, and estimates their 
overlaps as the threshold value 𝑝𝑐 [55–57], this study considers only finite systems, where in addition to the particle geometry, the 
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relative scale of the particle to the domain 𝜌0 (𝜌0 = 𝑉0∕𝑉𝑇𝑂𝑇 ) is deterministic as well. In other words, observing from a broader 
perspective, obtaining a typical percolation threshold value 𝑝𝑐 occurs for infinite systems and solely depends on the particle shape 
(𝑝𝑐 = 𝑝𝑐 (𝑟)), whereas this study operates on the finite systems, and in addition to the particle shape, its relative scale to the domain 
also becomes a deterministic factor (𝑝𝑐 = 𝑝𝑐

(
𝑟, 𝜌0

)
). Since the percolation threshold 𝑝𝑐 depends on the elemental density 𝜌0 and the 

axial ratio 𝑟, one could initialize from the largest possible range (i.e. [0,1]). Hence:

0 ≤ 𝑝𝑐 ≤ 1 (17)

In order to estimate the percolation threshold 𝑝𝑐 , we consecutively divide the given range to two halves, check the connection feasi-
bility of the middle value and narrow-down by selecting the half containing the percolation threshold 𝑝𝑐 , until reaching the required 
precision. Such threshold-containing interval should have no percolation at its minimum bound (denoted as 0) and percolation at its 
maximum bound (denoted as 1), so that the percolation threshold (0→ 1) falls within this interval. In fact, the percolation threshold 
𝑝𝑐 is a margin separating two behavior regimes of no percolation (i.e. 0) and percolation (i.e. 1), and the selected interval should 
satisfy both behaviors in its minimum/maximum boundaries. For studying the percolation feasibility for the desired original density 
𝑝, the original number of ellipses 𝑁 can be spread over the circular domain and can be used as an initializing parameter. In the 
absence of overlaps (rare case scenario), the assigned original density 𝑝, directly correlates with the assigned original number of 
ellipses 𝑁 , as below:

𝑁 ≈ 𝑝𝑁𝑇𝑂𝑇 (18)

where the approximation sign is used to round into the nearest integer and 𝑁𝑇𝑂𝑇 is the total number of ellipses in ideal case that 
could cover the entire domain, with no overlaps, as:

𝑁𝑇𝑂𝑇 ≈
𝑉𝑇𝑂𝑇

𝑉0
(19)

However, the higher number of the objects 𝑁 leads to the higher possibility of making overlaps and the rate of growth in the 
original density 𝑝 slows down. In other words, the formation of the overlaps would require a larger number of original objects 𝑁 for 
achieving a certain original density 𝑝, and one has:

𝑁 ≥ 𝑝𝑁𝑇𝑂𝑇 (20)

As a result, while there is no limit for the assigned objects 𝑁 , the obtained original density 𝑝 converges to the unity in the limit. 
Hence:

0 ≤𝑁 <∞ ⇒ 0 ≤ 𝑝 ≤ 1 (21)

Therefore, the algorithm for estimating the percolation threshold 𝑝𝑐 gets established as follows:
0. In order to establish 0 ≤ 𝑁 < ∞, initialize by assigning 

[
𝑁𝑚𝑖𝑛,0,𝑁𝑚𝑎𝑥,0

]
=
[
1,10𝑁𝑇𝑂𝑇

]
. Spread the assigned numbers (

𝑁𝑚𝑖𝑛,0,𝑁𝑚𝑎𝑥,0
)

of objects over the circular domain, as shown in Fig. 2a and obtain the original densities 𝑝𝑚𝑖𝑛 and 𝑝𝑚𝑎𝑥 (colored+gray). 
Initially, the range 

[
𝑝𝑚𝑖𝑛, 𝑝𝑚𝑎𝑥

]
is assigned to be very wide (≈ [0,1]) which ensures that it contains the percolation threshold 𝑝𝑐 . Mean-

while, the percolation threshold 𝑝𝑐 corresponds to the appropriate original number of ellipses 𝑁 in the range of 
[
𝑁𝑚𝑖𝑛,0,𝑁𝑚𝑎𝑥,0

]
, 

hence:

𝑁 ∈
[
𝑁𝑚𝑖𝑛,0, 𝑁𝑚𝑎𝑥,0

]
In the next steps, we will narrow-down the percolation threshold 𝑝𝑐 with the desired precision.
1. Having the original ellipses range of 

[
𝑁𝑚𝑖𝑛,𝑘,𝑁𝑚𝑎𝑥,𝑘

]
in the step 𝑘, calculate the percolation possibility for the middle of the 

range �̄�𝑘:

�̄�𝑘 ≈
𝑁𝑚𝑖𝑛,𝑘 +𝑁𝑚𝑎𝑥,𝑘

2 
(22)

where in the initial step �̄�0 ≈ 5𝑁𝑇𝑂𝑇 , and the approximation sign is used to round into the nearest integer. Similarly spread the 
assigned average original number of ellipses �̄�𝑘 into the medium and compute the obtained average original density �̄�𝑘 . Subsequently 
check percolation to the boundaries.

2. If there is a connection to the boundary the average original ellipse number �̄�𝑘 , is larger than the needed numbers for perco-
lation. In that case, it is chosen to be the new upper bound for the next iteration (i.e. 𝑁𝑚𝑎𝑥,𝑘+1∶= �̄�𝑘), otherwise it is not enough to 
achieve percolation, in which case it is chosen as the new lower bound in the next iteration (i.e. 𝑁𝑚𝑖𝑛,𝑘+1∶= �̄�𝑘), as below:

Check �̄�𝑘 for percolation ∶

{
Success (i.e. 1) 𝑁 ∈

[
𝑁𝑚𝑖𝑛,𝑘, �̄�𝑘

]
Failure (i.e. 0) 𝑁 ∈

[
�̄�𝑘, 𝑁𝑚𝑎𝑥,𝑘

] (23)

where 1 means touching the boundary and 0 means otherwise. Hence the range of the number of ellipses 𝑁 for the existence of the 
percolation threshold is halved in every consecutive iteration step 𝑘. Due to stochasticity, the confidence for locating the upper/lower 
boundary needs to be increased, so the critical density would not get accidentally missed out when iterating for a special arrangement 
of the particulates. In order to avoid such cases, the connection check for the middle value �̄� has been performed 11 times and the 
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Fig. 4. Illustration of the gradual convergence of the maximum 𝑝𝑚𝑎𝑥 and minimum 𝑝𝑚𝑖𝑛 versus the consecutive iterations 𝑁 , to the percolation threshold 𝑝𝑐 where 
finally �̄� ≈ 𝑝𝑚𝑎𝑥 ≈ 𝑝𝑚𝑖𝑛 and leads to 𝑝𝑐,3 ≈ 0.295 ± 0.046, 𝑝𝑐,2 ≈ 0.505 ± 0.030 using half-interval search in the original number of ellipses 𝑁 for 2 and 3 dimensions. 
(𝜌0 = 0.004, 𝑟= 0.5) The convergence maximum error threshold has been assigned as 0.0005.

resulting event (i.e. 0 or 1) with higher multiplicity is selected as the new upper/lower boundary. This will locally increase the 
confidence in choosing the appropriate half to continue with. As an example, the case of 

[
11010111011

]
is considered to be a 

percolation event (→ 1) and the case of 
[
01010101010

]
is interpreted as no percolation (→ 0), the latter being very close to final 

percolation threshold since the number of 0s and 1𝑠 are comparable. In fact, in the event of getting the mixed outcome of similar 
repetitions for 0 and 1, the explored boundary value should be near the percolation threshold 𝑝𝑐 already and choosing any half should 
lead to similar outcome.

3. Repeat the steps 1 and 2 for halving the range of original number of ellipses 
[
𝑁𝑚𝑖𝑛,𝑘,𝑁𝑚𝑎𝑥,𝑘

]
. Hence for every iteration 𝑘, 

spreading the minimum and maximum number of particles in this range over the medium, in average will generate the original 
density range 

[
𝑝𝑚𝑖𝑛,𝑘, 𝑝𝑚𝑎𝑥,𝑘

]
, as below:

𝑁𝑚𝑖𝑛,𝑘 ≤𝑁 ≤𝑁𝑚𝑎𝑥,𝑘 ⇒ 𝑝𝑚𝑖𝑛,𝑘 ≤ 𝑝𝑐 ≤ 𝑝𝑚𝑎𝑥,𝑘 (24)

4. Stop the iteration when the bounds of the obtained interval for the original density become close enough, with the assigned 
precision Err, such that ||𝑝𝑚𝑎𝑥,𝑘 − 𝑝𝑚𝑖𝑛.𝑘

|| ≤ Err. The error value Err could be small enough based on the required number of digits. 
As an example Err = 0.0005 could satisfy the precision up to 3 digits. Hence, the original density values in the boundaries approach 
enough together and the percolation value can be determined as:

𝑝𝑚𝑖𝑛,𝑘 ≈ 𝑝𝑚𝑎𝑥,𝑘 → 𝑝𝑐 (25)

Due to stochasticity, each run for percolation threshold 𝑝𝑐 was repeated 10 times to improve the confidence interval and bypass 
the exceptional case scenarios. Fig. 4 illustrates a convergence process for the elemental density 𝜌0 = 0.004 and the aspect ratio 
𝑟 = 0.5, where average and standard deviations of the local (each point from 5 runs) and global (from 10 runs) are visualized.

As observed, the error bars for this specific range of parameters are quite small (i.e. in 2D the first iteration for 𝑝𝑚𝑎𝑥 gets 0.639 ±
0.021 which shows the variation of 3.3%). Hence, increasing the number of repetitions in this case with additional computational 
cost might not add more information, while a larger error bar values would have required higher number of repetitions. Thus, the 
percolation threshold 𝑝𝑐 is obtained with the required precision.

As well, one should note that the obtained 𝑝𝑐 here is specific to the rigid boundary condition. However, if the periodic boundary 
condition (PBC) was assumed (either spanning or wrapping boundary condition), the possibility of a connection would increase and 
the obtained percolation threshold value 𝑝𝑐 would become smaller [46,58].

Note that, in the case that 𝑁𝑚𝑖𝑛,𝑘 and 𝑁𝑚𝑎𝑥,𝑘 are not updated, a new random placement of ellipses is performed and the obtained 
original density 𝑝𝑚𝑖𝑛,𝑘 or 𝑝𝑚𝑎𝑥,𝑘, might be slightly different (higher or lower) from the previous step with the same number of ellipses.

Steps 1 to 3 could get performed via assigning the original density values 𝑝𝑚𝑖𝑛 and 𝑝𝑚𝑎𝑥 instead of the original number of ellipses 
𝑁𝑚𝑖𝑛 and 𝑁𝑚𝑎𝑥. In such a case, the procedure for targeting the desired original density 𝑝 based on search for the appropriate number 
of ellipses 𝑁 is explained in the next section.

Table 2 compares the obtained values through the developed model, with the popular FSS method. Note that while FSS method 
is based on the end-to-end percolation possibility in a planar medium, the current study explores the center-to-end percolation in 
a circular medium, where the central particle is already prescribed. Hence, one should expect some degree of difference in the 
percolation thresholds predicted by this study and the existing literature.

2.5. Connection density 𝜌

Given a dispersed medium of the elliptic particulates with the original areal/volumetric density 𝑝, the propagating cluster starts 
from the prescribed central element as the seed and grows through overlaps toward the border of the rounded domain. Such cluster 
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Table 2
Comparison of the current model with the previous studies using finite size scaling method.

This Study Literature 
Geometry 𝑟 𝜌0 𝑝𝑐 𝑝𝑐 ̄Err

Sphere 1 0.004 0.283 ± 0.013 0.289 [59], 0.2896 [56], 0.2895 [46] ≈ 2%

Prolate
0.5 0.002 0.265 ± 0.015 0.262 [60] ≈ 1%
0.25 0.016 0.167 ± 0.026 0.16 [61] ≈ 4%

Oblate
0.5 0.002 0.271 + 0.015 0.263 [60] ≈ 3%
0.25 0.002 0.194 ± 0.018 0.200 [60] ≈ 3%

has a certain connected density 𝜌 (i.e. 0 ≤ 𝜌 ≤ 1) and a reach, which is maximum possible distance from the center to the boundary 
of the propagating connected cluster (i.e. 0 ≤ reach ≤𝑅) and 𝑅 is the radius of the domain).

In order to characterize the correlation of the maximum density difference Δ𝜌𝑚𝑎𝑥 versus the difference in the percolation threshold 
Δ𝑝𝑐 , for every simulation one would need to vary the original density 𝑝 in the range of the corresponding percolation thresholds, 
where:

𝑝𝑐,3 ≤ 𝑝 ≤ 𝑝𝑐,2 (26)

For this range, one could generate the percolation case scenario with the desired original density 𝑝. The minimum number of required 
original particles 𝑁 occurs in ideal case of no overlaps (i.e. 𝑝𝑁𝑇𝑂𝑇 ). Hence, one can start from this number, randomly disperse the 
particles, and compute the obtained density 𝑝𝑘. In the presence of the overlaps, one has 𝑝𝑘 < 𝑝. In such case, we repetitively increase the 
original number of ellipses (i.e. 𝑁𝑘+1 ∶=𝑁𝑘 +1), until approaching the original density 𝑝 with the desired precision and anticipated 
error threshold Err, as follows:

||𝑝− 𝑝k
|| < Err (27)

where the threshold value in this case was taken to be Err = 0.0005. There could be exceptional circumstances for which the projected 
values of 𝑝𝑘 and 𝑝𝑘+1 in two consecutive runs are too different and neither of them satisfy Equation (27). In such cases, the program (i.e. 
while loop) was repeatedly re-run from the beginning, until Equation (27) became satisfied. Algorithm 1 summarizes the mentioned 
steps as pseudo-code, where the upper limit of the number of ellipses 𝑁𝑚𝑎𝑥 for stopping and re-running the program has been taken 
as 10 times the total number of domain-covering ellipses, with no-overlaps (𝑁𝑚𝑎𝑥 ∶= 10𝑁𝑇𝑂𝑇 ).

Algorithm 1 Targeting the desired original density 𝑝 via the handle of number of ellipses 𝑁𝑘.

Pseudocode Explanation

𝑘 ∶= 1 𝑁𝑘 ∶= 𝑝𝑁𝑇𝑂𝑇 → Compute 𝑝1 Try initially to get 𝑝 from the case of no overlaps.

While ||𝑝− 𝑝k
|| > Err → 𝑁𝑘+1 ∶=𝑁𝑘 + 1 Increase the number of ellipses 𝑁𝑘 by 1.

𝑘 = 𝑘+ 1 → Compute 𝑝𝑘 Find the new original density 𝑝𝑘.

if 𝑁𝑘 = 10𝑁𝑇𝑂𝑇 →𝑁𝑘 ∶= 𝑝𝑁𝑇𝑂𝑇 If the density is missed-out, try from beginning.
End

The continuum percolation algorithm (𝑁 → 𝑝→ 𝜌) is described as follows:
1. The 𝑁𝑘 number of ellipsoids are generated with the variation in the prescribed elemental density values 𝜌0 ∈ {21,22,23,24,25, 

26}×10−3 and that of the aspect ratio values 𝑟 ∈ {0.125,0.25,0.5,0.75,0.875,1 (sphere)} as listed in the Table 3. The axial dimensions 
of 𝑎1, 𝑎2 (and 𝑎3) are calculated from the equations in Table 1, which form prolate (i.e. (1, 𝑟, 𝑟)) and oblate (i.e. (1,1, 𝑟)) ellipsoids. 
For each ellipsoid, two of the three rotation angles are given random values (i.e. 𝛼𝑖 ∈ [0,2𝜋]) and its coordinates are rotated using 
the rotation matrix in Equation (6).

2. The ellipsoids are randomly dispersed into central locations 𝑥0,𝑖 ∈
[
− 𝑙

2
,
𝑙

2

]
, such that they remain inside the circle centered at 

the origin with a radius of 𝑙
2

. Hence:√
𝑥20,1 + 𝑥20,2 + 𝑥20,3 ≤

𝑙

2
(28)

3. The adjacency matrix Γ𝑁𝑘×𝑁𝑘
is created based on the algorithm presented in the subsection 2.3.

4. In order to ensure the instigation of percolation, the first elliptic particulate is placed in the center (i.e. 𝐗1 = 0) as the seed 
element, with a random orientation. Subsequently, continuum percolation is performed through the connected pathways (i.e. over-
laps), until no further progress can be made. The obtained cluster at each iteration becomes a subset of the original dispersed ellipses. 
Figs. 5a and 5b illustrate samples of center-initiated percolation clusters in 2 and 3 dimensions respectively.

5. The original density 𝑝, as well as the density of each connected cluster 𝜌 can be obtained via gridding the medium into multitudes 
of points (i.e. 𝑁𝑑𝑜𝑡𝑠 = 100𝑛 where 𝑛 is the dimension of the domain) with finite spacing, and counting the portion of the enclosed 

Applied Mathematical Modelling 143 (2025) 116007 

9 



A. Aryanfar, M. Yamani and W.A. Goddard 

Table 3
Simulation parameters.

𝑟 𝜌0
(
×10−3

)
𝑙 𝑁 Repetitions 𝑁𝑑𝑜𝑡𝑠

{0.125,0.25,0.5,0.75,0.875,1}
{
21,22,23,24,25,26

}
1

[
1, 10

𝜌0

]
×11 (point), ×10 (run) 100𝑛

(a) 2𝐷 Clustering for the elemental density 𝜌0 = 0.002, aspect ratio 𝑟= 0.25, and 
given number of ellipses𝑁 = 375.

(b) 3𝐷 Clustering for the elemental density 𝜌0 = 0.004, aspect ratios 𝑟 = 0.5, and 
the given number of ellipses (𝑁 = 88).

Fig. 5. The center-initiated percolation samples, reaching the boundary of the 2 and 3 dimensional domains. The color range, from blue to red, commensurates with 
the distance (i.e. number of iterations steps) from the center and the gray color shows the disconnected ellipses.

points falling within either entire ellipses (𝑉 ) or the connected cluster (𝑉Clus). Hence, similar to step 3, for the point to fall inside the 
connected cluster, it should satisfy Equation (16). Fig. 6 visualizes such points, inside either the connected cluster (color) or separated 
ellipsoids (gray). Hence all the inner points are counted (for overlaps, only once).

6. The density of the connection cluster 𝜌 is obtained via dividing its obtained volume (𝑉Clus) by the total volume (𝑉𝑇𝑂𝑇 ) coverage 
of the domain, as shown in Equation (9).

The prescribed variation in the element geometry 𝑟, as well as the elemental density 𝜌0 determines the density of the connected 
cluster 𝜌 (steps 1 to 6). This causes disparity in the 2D-3D difference of the percolation threshold Δ𝑝𝑐 and consequently in the 
difference of the maximum 2D-3D difference in cluster densities Δ𝜌𝑚𝑎𝑥, as schematically illustrated earlier in the Fig. 3. Fig. 7
illustrates such correlation, where for each original density value, 10 runs were performed, and their average and standard deviations 
were determined.

3. Results & discussions

The pattern of convergence to the percolation threshold 𝑝𝑐 for connecting the center to the border which is shown in the Fig. 4
necessitates the involvement of (at least) one overlapping chain of elements, with a specific individual scale (i.e. 𝜌0) and the number 
involved in the cluster chain 𝑁Clus which is a subset of original number of elements 𝑁 (i.e. 𝑁Clus ≤ 𝑁). Typically, the larger the 
particle size (𝜌0 ↑), the fewer number of ellipses are needed for the connection (𝑁Clus ↓), and in order to maintain the percolation 
threshold one has:

𝜌0 ∼
1 

𝑁Clus
(29)

In particular, if the elemental density 𝜌0 becomes very large, only a small number of ellipses are needed for percolation. In such 
a case, the effect of individual particles (i.e. orientation 𝛼𝑖 , axis size 𝑎𝑖), becomes more pronounced for determining the extent of 
the connected cluster 𝜌 and the possibility of full percolation (i.e. touching the boundaries). Since such orientations in-particular are 
randomly assigned, the percolation in such finite systems will become more stochastic and the error range will grow. Conversely if 
the elemental density is relatively small, the required number of ellipses for percolation becomes large, and cluster-level behavior 
(i.e. placements of particle) becomes more important in determining the extent of percolation.
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Fig. 6. Illustration of counting the enclosed grid points for computing the cluster connection density 𝜌, where it could get computed from the fractions of enclosed 
dots in the connected chains (in color). The zoomed area facilitates noting the enclosed grid points.

(a) Prolate Geometry: (1, 𝑟, 𝑟). (b) Oblate Geometry: (1,1, 𝑟). 

Fig. 7. The correlation of the maximum 2D-3D difference in the connection density Δ𝜌𝑚𝑎𝑥 versus the 2D-3D difference in the percolation thresholds Δ𝑝𝑐 for (a) 
Prolate (i.e. (1, 𝑟, 𝑟)) and (b) Oblate (i.e. (1,1, 𝑟)) geometries, which is obtained through varying the aspect ratio 𝑟, for multitudes of original elemental density values 
𝜌0 ∈ {1,2,8,16,32} × 10−3 . The dashed lines represent the linear regression fitting where the positive slope, illustrates the direct correlation between the axis.

Following on from the divergence and convergence trends, explained earlier in the Fig. 3, the correlation between the 2D-3D 
difference in the percolation thresholds Δ𝑝𝑐 versus the maximum 2D-3D difference in the connection densities Δ𝜌𝑚𝑎𝑥 is explored 
numerically. In this regard, sweeping the original density 𝑝 in the range of the percolation thresholds 𝑝𝑐,3 < 𝑝 < 𝑝𝑐,2, the individual 
connection densities 𝜌 and their overall maximum difference across the range Δ𝜌𝑚𝑎𝑥 = 𝜌3 −𝜌2 is computed. Such correlation, which is 
specific to the aspect ratio 𝑟 and the elemental density 𝜌0, was run 10 times and the average and standard deviations are presented in 
the Figs. 7a and 7b for both prolate (1, 𝑟, 𝑟) and oblate (1,1, 𝑟) geometries respectively. Subsequently, linear interpolation (i.e. dashed 
lines) was performed, where the positive slopes make such correlation evident. Hence:

Δ𝜌𝑚𝑎𝑥 ∼Δ𝑝𝑐 (30)

This correlation could be qualitatively explained visually from the schematic of estimated 2D and 3D density trends, illustrated 
earlier in Fig. 3. Comparing the corresponding differences in 2D and 3D density when moving along the actual calculated trend curves 
from (0,0) to (1,1), one can focus on the highlighted zone of difference which starts from a divergence stage, and ends at a convergence 
stage. This zone roughly resembles a diamond, where any horizontal enlargement in the width (i.e. Δ𝑝𝑐 ↑) should lead to growth in 
the height (i.e. Δ𝜌𝑚𝑎𝑥 ↑) as well. Conversely, when the 2D and 3D trends almost lie on each other Δ𝑝𝑐 → 0 and therefore Δ𝜌𝑚𝑎𝑥 → 0.

Additionally, one could compare the rate of the growth in connection density 𝜌 versus the change in the original density 𝑝, 
between the 2D and 3D percolation systems. Defining such rate as 𝑚 ∶= 𝜕𝜌

𝜕𝑝 
, one could discern that in the earlier divergence zone the 

3D percolation system picks up with faster rate. Conversely, in the later convergence zone, the 2D percolation system grows with a 
faster rate, and catches up. This can be summarized as follows:
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(a) The effect of particle geometry on the reach: When particle 
volume (elemental density 𝜌0) is conserved, a larger elongation in 
the major axis (||𝛿𝑎1||) occurs in the expense of a lower shrinkage 
in the minor axis (||𝛿𝑎2||).

(b) The average connection density �̄� for the prolate (solid), ver-
sus the oblate (dashed) ellipsoid geometries. The original number 
of particles is chosen as half of the saturating non-overlapping case: 
𝑁 ∶= 0.5𝑁𝑇𝑂𝑇 (rounded).

Fig. 8. The role of the element shape (controlled by aspect ratio 𝑟) on the obtained average connected density �̄� which commensurates with the reach of the individual 
objects (i.e. local) and the connected cluster (i.e. global). In the largest limit as the aspect ratio tends to 1 (𝑟→ 1), both prolate (1, 𝑟, 𝑟) and oblate (1,1, 𝑟) geometries 
become a sphere, and the obtained average connection densities �̄� converge to each other.{

�̄�3𝐷>�̄�2𝐷 Divergence Zone

�̄�3𝐷 < �̄�2𝐷 Convergence Zone
(31)

where the overbar on a symbol stands for the average value, to avoid exceptional cases due to stochasticity.
An effective factor for the connectedness of the ellipsoid particulates is their shape while conserving the volume, which is defined 

for an ellipsoid of axes 𝑎1, 𝑎2 and 𝑎3 as:

𝑉 = 4
3
𝜋𝑎1𝑎2𝑎3 (32)

Since 𝛿𝑉 = 0, one could investigate the reach the particle, using the relative variations in the axis 𝑎𝑖 . Hence, the differential form 
yields:

𝛿𝑎1
𝑎1

+
𝛿𝑎2
𝑎2

+
𝛿𝑎3
𝑎3

= 0 (33)

which means that a relative increase in each axis should be compensated by a relative decrease in the other directions. Such relative 
correlation means a higher change for the larger axis (||𝛿𝑎𝑖|| ∝ 𝑎𝑖) which increases the reach of the connected cluster to a greater 
extent, than decreasing it in the other directions, as shown in the Fig. 8a. Hence overall, the extent of the connection increases. 
This is the underlying reason for higher connection propensity in the prolate shapes (1, 𝑟, 𝑟) than in their oblate counterparts (1,1, 𝑟). 
The simulation results in the Fig. 8b show the analogous trend where in the limit of 𝑟 → 1 the average connection density values �̄�
converge since both shapes merge to a sphere. Such invariance to the shape (i.e. 𝑟), particularly has recently been investigated in 2D 
for the ratio of normalized density of particles in the connected cluster to the percolation threshold (i.e. �̂� ∶= 𝜌 

𝑝𝑐
) to the relative strain 

in the number of particles from the percolation state (i.e. 𝜖 ∶=
𝑁 −𝑁𝑐

𝑁𝑐

) [62], illustrating the independence from the eccentricity 

(i.e. shape factor). The correlation is obtained to be nearly parabolic in log 𝜖 (Figure 5a in the aforementioned paper), and can be 
represented by the following form:

�̂� = 𝐶1 +𝐶2log 𝜖 +𝐶3 (log 𝜖)2

Using our procedure, we have investigated such a correlation by computing the defined variables �̂� versus 𝜖 (10 times for a point) 
using the entire span of the aspect ratios 𝑟 ∈ {0.125,0.25,0.5,0.75,0.875,1}, to ensure a wide range of eccentricity. The interpolating 
coefficients for the selected values of the original densities 𝜌0 are obtained as:

𝐶1 (𝑟) 𝐶2 (𝑟) 𝐶3 (𝑟)

𝜌0
0.002 0.640 ± 0.058 0.264 ± 0.014 0.039 ± 0.003
0.004 0.622 ± 0.069 0.264 ± 0.018 0.039 ± 0.003

Since the standard deviations are significantly smaller than the average values of the corresponding coefficients (particularly for 
the linear and parabolic terms), one can conclude that the correlations are nearly independent of the particle shape (𝐶𝑖 (𝑟) ≈ 𝐶𝑖) for 
the selected original densities.

Note that, while the simulations in this paper were carried out using the rigid boundary condition, adopting the periodic boundary 
condition is expected to lead to qualitatively similar trends, albeit quantitatively different. As well, utilizing normalized parameters, 
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such as elemental density (i.e. 𝜌0 =
𝑉0

𝑉𝑇𝑂𝑇

), original density (i.e. 𝑝 = 𝑉

𝑉𝑇𝑂𝑇

) and the connected density (i.e. 𝜌 =
𝑉Clus

𝑉𝑇𝑂𝑇

), makes the 

characterizations applicable to any domain size.

4. Conclusions

In this work, we have developed center-initiated continuum percolation procedures via the elliptic fillers in 2 and 3 dimensions. 
After defining a 2D-3D equivalence for original density 𝑝, we initially developed a new iterative method to compute the percolation 
threshold 𝑝𝑐 in finite systems versus the elemental density 𝜌0 and the aspect ratio 𝑟. Subsequently, we established an efficient com-
putational methodology to discern the connected cluster and compute its density 𝜌. Finally, we characterized the maximum 2D-3D 
difference in density of the connection cluster Δ𝜌𝑚𝑎𝑥, and successfully correlated that to the 2D-3D difference in the percolation 
thresholds Δ𝑝𝑐 . Furthermore, we have compared 2D and 3D percolation models, in terms of the rate of variation in the connection 
density 𝜌 versus the original density 𝑝. Finally, we addressed the role of the shape parameters on the reach for prolate and oblate 
geometries, which was verified through computing the connected density 𝜌 for a series of aspect ratios 𝑟 and elemental density 𝜌0. 
The results could be useful for efficient percolation design based on thick (3𝐷) versus thin (2𝐷) composite layers in terms of the 
geometrical parameters as well as the elemental density.
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Appendix A

The pseudo-chart for computing the densities via the overlaps have been visualized in the Figure below: 

Pseudo-chart for calculating the percolation thresholds 𝑝𝑐 and connected densities 𝜌:, Ellipses: number of ellipses; 𝑥𝐶,𝑘, 𝑦𝐶,𝑘, 𝑧𝐶,𝑘: the central coordinates for the ellipse 
𝑘; 𝑎𝑘, 𝑏𝑘, 𝑐𝑘 and 𝛼𝑘, 𝛽𝑘, 𝛾𝑘: scales and rotations of the axis in the respective directions; Γ𝑝,𝑞 : adjacency matrix value for the ellipses 𝑝, 𝑞; 𝐶𝑙: the connected cluster of 
ellipses, 𝑉 : the number of the grid points falling inside the cluster of ellipses, 𝑉𝑇𝑂𝑇 : the total number of grid points; 𝜌: the density of the propagating connected cluster.

Appendix B

The rotation matrix has been expressed in terms of 3 distinct rotations 𝛼1, 𝛼2 and 𝛼3 around the axis 𝑥, 𝑦, 𝑧. We verify their 
individual positive (right-handed) rotations visually as below.
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1. Rotation around axis 𝑥:

𝑅𝑥 =
⎡⎢⎢⎣
1 0 0
0 cos𝛼1 − sin𝛼1
0 sin𝛼1 cos𝛼1

⎤⎥⎥⎦
which yields: 

Left: Original, Right: 𝛼1 = 80◦ ✓

2. Rotation around axis 𝑦:

𝑅𝑦 =
⎡⎢⎢⎣

cos𝛼2 0 sin𝛼2
0 1 0

−sin𝛼2 0 cos𝛼2

⎤⎥⎥⎦

Left: Original, Right: 𝛼2 = 80◦ ✓
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2. Rotation around axis 𝑧:

𝑅𝑧 =
⎡⎢⎢⎣
cos𝛼3 − sin𝛼3 0
sin𝛼3 cos𝛼3 0
0 0 1

⎤⎥⎥⎦

Left: Original, Right: 𝛼3 = 80◦ ✓

Appendix C

Below, we provide two examples for visualization of ellipsoids intersections and checking the accuracy of the adjacency ma-
trix:

∙ 𝑁𝐸𝑙 = 20 (crowded example) 

The obtained Adjacency Matrix Γ𝑖,𝑗 Visualization of Ellipsoids 
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∙ 𝑁𝐸𝑙 = 10 (clear example) 

The obtained Adjacency Matrix Γ𝑖,𝑗 Visualization of Ellipsoids 

Appendix D. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.apm.2025.116007. 

Data availability

The raw data for producing the results in this manuscript are freely available upon request from the corresponding author at 
aryanfar@caltech.edu.
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